
Enhancements to Statistical Protocol IDentification (SPID)
for Self-Organised QoS in LANs
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Abstract—Since most real-time audio and video applications
lack of QoS support, QoS demand of such IP data streams
shall be detected and applied automatically. To support QoS
in LANs, especially in home environments, a system was
developed, which enables self-organised QoS for unmanaged
networks through host implementations - in contrast to tradi-
tional solutions without network support. It supports per-link
reservation and prioritisation and works without a need for
application support. One part of this system is an automated
traffic identification and classification system, which is subject
of this paper. An efficient set of attribute meters, based on
the Statistical Protocol IDentification (SPID), was investigated,
enhanced and evaluated. We improved the performance, added
support for UDP protocols and real-time identification. It is
shown that using our implementation efficient near real-time
protocol identification on per-flow basis is possible to support
self-organised resource reservation.
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I. INTRODUCTION

Today, multimedia services increase dramatically in home
and private networks [1]. Television services over the net-
work (IPTV) and voice over ip (VOIP) services have a
demand for high bandwidth capacity and very strong quality
of service (QoS) needs [2], [3]. To guarantee these, common
QoS strategies like IntServ, using RSVP, or DiffServ have
to be supported by the network. Since in most home or
private networks low cost hardware is used, a support
of these techniques cannot be assumed. Beside this, web
video applications tunnel their streams using HTTP and are
therefore not easily distinguishable from common Internet
traffic. This results in less technology acceptance by users,
since lacking QoS leads to a lower quality of experience
(QoE) level [4]. Especially for IPTV providers the network
plane inside the households is unpredictable, as providers

only can influence the QoS level until the transfer point
to the house. In addition to that is the network a shared
medium, in contrast to the traditional TV cable, which leads
to new challenges for a traditional service to achieve the
accustomed QoE level. One approach to increase QoE in
LANs is the QoSiLAN system [5]. It is based on several
core technologies and works in three phases. In a first phase
physical network discovery algorithms and QoS parameter
tests run through, to generate a detailed map about the
local network and its available resources. For this purpose,
the Mircosoft LLTD protocol [6] was reimplemented and
extended to efficiently make use of its topology and QoS
analysis functionality. In a second phase traffic monitoring,
analysis and policing is performed. The research on this
part is the subject of this paper. Finally network resources
are reserved and prioritised for the monitored flow. Here
signalling based on the NSIS protocol’s NSLP for QoS
Signalling [7] framework is applied to coordinate QoS issues
between the network hosts.
In contrast to common QoS strategies QoSiLAN doesn’t
depend on router or switch support to enable QoS, but
makes use of it, if available. The central entity, which
performed the mapping and monitoring advises all hosts in
the network to shape and DSCP-mark their traffic according
to its policies and advises. But only those traffic flows need
to be shaped, whose data-paths affect physical links where
current reservations apply.

II. RELATED WORK

A. Port-Based Identification

The TCP/UDP-port-based packet identification is the sim-
plest method to classify traffic. By using this method the port
numbers of the packets are inspected and mapped to the
IANA’s list of well-known ports. Moore et al. [8] showed



that approximately only 70% of the traffic can be identified
correctly that way. One of the problems, when using port-
based packet identification, is that many applications like
P2P may not have a registered port, which makes it com-
pletely impossible to detect them. Additionally some ports
are ambiguous. One example is port 888, which is used
by the CD Database Protocol (CCDP), the AccessBuilder
[9] and the RAID controller 3DM and 3DM2 protocols.
Another problem with port-based classifiers is the increasing
number of applications that use the HTTP’s port 80 to bypass
firewalls. Also security attacks are not associated with an
specific port and can therefore not be detected using port
mappings. Overall is an identification based on the port
numbers not a reliable method anymore.

B. Deep-Packet-Inspection

The Deep Packet Inspection (DPI) is a more reliable
technique to inspect packets on application level, which
is the layer 7 in the OSI reference model. In layer 7, a
packet can be scanned for application specific signatures.
One disadvantage of this approach is the need for hu-
man intervention to analyse the application and to create
an unique application signature [10]. This analysis entails
a lot of effort, even if a RFC or whitepaper exists. If
no application documentation exists, it is very difficult to
reverse-engineer the targeted application’s protocol. Another
drawback emerges, when the application protocol doesn’t
carry application significant values. In this case there is
no chance to identify the application. DPI also causes
significant privacy issues, since it also scans the payload
of plain text protocols like e.g. SMTP, HTTP, POP3, etc.,
which may carry unencrypted private data. This may also
lead to false positive results.

C. Machine-Learning Techniques

Machine-learning algorithms are powerful for traffic clas-
sification [11] and can be categorised as supervised, unsuper-
vised and semi-supervised learning [5]. Supervised learning
means that labelled training data are required to classify
flows. In contrast, unsupervised learning algorithms work
with unlabeled data. They don’t classify, but cluster the flow
into groups. The third variant, the semi-supervised machine
learning algorithms makes use of both techniques. It needs
a mixture of a small amount of labelled training data and
a large amount of unlabelled training data for identification
and learning. Many machine learning algorithms need full-
flow statistics, which makes it difficult to identify flows in
real-time [10]. Therefore these approaches are appropriate to
us, because our goal is to detect a particular flow and classify
it in near real-time. But since most of these algorithms have
a high complexity, the computing costs are too high for
embedded real-time calculation.

III. STATISTICAL PROTOCOL IDENTIFICATION (SPID)
A. Algorithm Details

The SPID algorithm was deployed by Erik Hjelmvik
and Wolfgang John and is a statistical approach to identify
applications and protocols [12]. There is no need to search
for unique application signatures and in addition real-time
detection after the 10th packet is possible. Both features
define the advantages of this kind of technique. The SPID
algorithm works in three steps as presented in figure 1. At
first all packets must be grouped together as bi-directional
flows. In the case of TCP a flow starts with a three-way-
handshake. A flow will be identified by source IP and port,
destination IP and port and transport protocol (5-tupel).
But only packets carrying a payload are significant. This
means that e.g. all TCP-ACK packets are not relevant for
the statistics.

Figure 1. The SPID algorithm works in three phases.

When a flow reaches a minimum number of 10 packets it
becomes subject of the actual analysis. Plain-text protocols
can be identified after the 10th packet, but binary or HTTP-
tunnelled protocols need up to 20 packets for reliable
detection as pointed out in section IV. c. By making use
of several statistical methods, samples are taken from each
flow, e.g. byte frequency, entropy, direction changes and
many more. After this step, it branches into identification or
approximation. Approximation is the learning part, in which
new protocols can be included or old ones improved. The
learning part works by making use of the empirical law of
large numbers. The identification is the heart of the SPID
algorithm. It compares the probabilities of the trained flows
with the observed flows by calculating the Kullback-Leibler
divergence [13], as shown in equation 1. It is the fingerprint
that is compared for protocol identification.

D(P ||Q) = KL(P,Q) =
∑
x∈X

P (x) log2
P (x)

Q(x)
(1)

The Kullback-Leibler divergence is a logarithmic measure
of the relation between the relative frequency of the ob-
served (P ) to the trained flows (Q), summed for each
attribute measure. The result is then compared to the list of
known protocols. The protocol with the nearest divergence



(D(P ||Q)) is then identified. The distance represents the
probability. The threshold to identify a flow as unknown
was experimentally determined, as presented in figure 4.

B. Implementation

We reimplemented the SPID algorithm with some differ-
ences to Hjelmvik to gain the performance and to support
a wider range of protocols, as explained in the following.
To ensure a general compatibility even on small scale
embedded hardware, we implemented it using the C++ pro-
gramming language and the libPcap library for portability.
New attribute meters were implemented to support UDP
and near real-time identification. We have optimised the
fingerprint database to keep it as small as possible and
flexibly exchangeable. In our case the fingerprint database
with 17 protocols has a size of 389KB, whereas Hjelmvik’s
consumes 9.8MB for 12 protocols, using a XML-format.
This was achieved by choosing a binary format and defining
a variable array size for each attribute meter.
Our focus was on streaming protocols like RTP, MPEG-TS,
MMS or RTMP as well as on progressive downloads like
flash videos and WMV/OGG streams, which are tunnelled
through HTTP. We chose 12 protocol attribute meters, which
actually worked out very well and with good performance
for our purposes.

C. Protocol Attribute Meters

The protocol attribute meters are the statistical measure-
ments of this approach.

byte-frequency: This measurement operates on the first
TCP packet of each direction and counts the frequency of
a byte in the payload [12]. Encrypted or compressed data
appear in an even distribution, whereas data in plain-text
show an uneven distribution. See figure 2 for an example.

byte-frequency of the first 32 bytes: Most UDP pro-
tocols contain little clear-text information and have only
a small header, therefore the byte-frequency of the whole
payload results in a high divergence value. To avoid this,
we took only the first 32 bytes of the first packet and count
the frequency.

direction-changes: It measures how often the protocol
or the application communication changes the direction.
Interactive protocols like Telnet, SSH or FTP have frequent
direction changes, whereas streaming protocols have very
few.

direction bytes meter: Percentage of amount of data,
which was sent from the client to the server and vice versa.
Through this measurement a distinction is possible between:

• upload and download balanced (e.g. RTP for VoIP, ...)
• almost only download (e.g. HTTP, POP3, ...)
• almost only upload (e.g. SMTP, IRC, ...)
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Figure 2. Byte Frequency Histogram

entropy: The entropy is a measurement for the amount
of random information within a system [14]. The maximal
entropy of 256 possible bytes is H(I)max = 8. It is applied
to the first packet in each direction. E.g. plain-text protocols
with natural language in it, have low entropy values, while
those with encrypted or compressed data have high ones.

first 4 bytes hash-function: The first four bytes of the
first packets in each direction are very characteristic for most
application protocols [15]. For the first four bytes a hash-
value is calculated. To simplify matters we make use of a
cross-sum. A sample hash function for the HTTP is shown
in table I.

1: 47 45 54 20 G E T = 31
2: 48 54 54 50 H T T P = 35

Table I
EXAMPLE HASH FUNCTION FOR THE HTTP

action reaction first 3 byte hash meter: It generates a
hash-function of the first 3 bytes of each packet that wasn’t
sent in the same direction as the previous one. The idea
behind this measurement is to get a connection between
a request and a response, especially for command based
protocols like HTTP, FTP or POP3.

byte pairs reoccurring: This measurement identifies
bytes that occur more than once within the first 16 bytes
of the first packet. E.g. it identifies the “SS” in the SSH-
banner or the “TT” in the HTTP GET and POST request.

unicode frequency: It scans for alphabetical unicode
strings in the first five packets and saves the byte frequency



for it. Since some protocols like WMV streams or MMS
[16] use unicode strings in their protocols.

first 3 bytes equality meter: It checks how often the
first 3 bytes are equal, since this is significant for protocols
that have a fixed header in every packet, e.g. the RTP [17]
or MPEG-TS [18].

first bit positions meter: Especially UDP protocols have
a small header, which consists of fields and flags on bit
level. This fact makes it hard for the byte frequency meter
to detect the particular protocol. This attribute meter counts
the frequency of a single bit in connection with its offset.
The first 128 bits will be viewed and counted.

first payload size: Payload length of the first packet
in a flow [19]. In most cases the first packet contains
information for initialisation of a session. The first
packet size of a HTTP session is only between 120 and
1000 bytes. POP3 for example is between 10 and 100 bytes.

Implementation experiences revealed, that some attribute
meters are not very accurate and adulterated the results. For
this reason the duration of flows, port numbers, packet size
and the inter-arrival-times were not included for the SPID
calculation. Instead, we included additional attribute meters
to enhance the results. These were the number of direction
changes, the first payload size, the entropy and the unicode
frequency.

IV. EVALUATION

A. Datasets and Implementation Setup

An important part of the research presented here was the
creation and procuration of datasets. On one hand we created
datasets under laboratory conditions, and on the other hand
we used freely available datasets1,2,3 and extracted the
specific protocols. On creation, we paid extra attention to
capture training data from applications with as different
versions and implementations as possible. E.g. for HTTP
we used various browsers on different operating systems to
get a wider spectrum of header data. In order to do this, we
automated as much as possible using Perl scripts. To capture
network traffic we used the packet analysers Tcpdump4 and
Wireshark5. Overall we gathered 3135 pure flows taking
more than 1.5GB for the 17 protocols we tested.

B. Evaluation Methods

Evaluations are performed by the formula for the Recall,
the Precision and the F-Measure to analyse the accuracy and
stability of this approach [20], as presented in equations 2
to 4. It is necessary to know the true-positives (TP), which

1http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/
1999data.html

2http://www.pcapr.net
3http://www.openpacket.org/
4http://www.tcpdump.org/
5http://www.wireshark.org/

represent all the flows that are identified correctly. The false-
positives (FP) represent the not or wrong identified flows.
The false-negatives (FN), represent the other protocols that
were wrongly identified. The F-Measure is the weighted
combination between recall and precision. We use the har-
monic mean (F-Measure) rather then the arithmetic mean,
since it gets always 50% if recall or precision is 100% and
the other 0%.

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F -Measure =
2 · Precision ·Recall

Precision+Recall
(4)

C. Results

The figure 3 contains the final results created using 30
trained session each.
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Figure 3. Protocol Identification Results

For a more detailed view, see table II, which presents the
underlying data.

It’s shown that this implementation achieves good results
for most of all of the tested protocols. The HTTP identifica-
tion is less good, since it is a more loosely described protocol
[12], e.g. it is difficult to differentiate between a flash video
and a website, which is compressed with gzip or which loads
lots of images using a single TCP connection. Also a lower
precision was archived for WMV streams, since most WMV
data is not only progressively tunnelled through HTTP, but
also streamed using the MMS protocol. That’s why they are
often mixed up by the SPID. The BitTorrent protocol makes
use of the Message Stream Encryption (MSE) [21], to com-
plicate identification through several obfuscation techniques
and encryption. The AccumulatedDirectionBytesMeter [15]
is a special attribute meter to identify BitTorrent. We do
not make use of this meter, since it blurs significantly the

http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/1999data.html
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/1999data.html
http://www.pcapr.net
http://www.openpacket.org/
http://www.tcpdump.org/
http://www.wireshark.org/


Protocol # Val. Rec. Prec. F-Meas.
BT 30 197 76.65% 98.05% 86.04%
FLV 30 70 98.57% 90.70% 94.52%
FTP 30 461 97.62% 100.00% 99.80%
HTTP 30 127 91.34% 88.55% 89.92%
IRC 30 100 95.00% 100.00% 98.51%
MMS 30 252 94.05% 100.00% 96.93%
MPEG-TS 30 40 100.00% 100.00% 100.00%
OGG 30 122 97.06% 100.00% 98.51%
POP3 30 55 100.00% 96.49% 98.21%
RTMP 30 112 99.11% 100.00% 99.55%
RTP/UDP 30 69 100.00% 100.00% 100.00%
SMTP 30 464 100.00% 100.00% 100.00%
SSH 30 136 98.53% 100.00% 99.26%
SSL 30 41 100.00% 100.00% 100.00%
Telnet 30 812 99.01% 100.00% 99.50%
TFTP 30 42 97.62% 100.00% 98.80%
WMV 30 35 100.00% 68.63% 81.40%

Table II
VALIDATION RESULTS
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Figure 4. The F-Measure Depending on the Number of Trained Flows

results for the other protocols. Figure 4 shows the F-Measure
depending on the number of trained flows.

There one can see that with the number of trained flows
the stability of the identification becomes better. The graph
shows that after the 20th packet the F-Measure for all proto-
cols reaches the 80 percent marker, which is a critical value
for a stable protocol identification. For plain-text protocols
like IRC, Telnet, SMTP, etc. is a stable identification possible
after the 10th packet. Figure 5 shows the F-Measure with 30
trained flows depending on the number of inspected packets
with payload. As shown in this figure, the F-Measure has
risen rapidly after the 13th packet for OGG vorbis and
WMV streams. Only after this point there is a distinction
possible between those two. The F-Measure evens out after
the 20th packet. This is early enough to initiate actions,
e.g. to prioritise the particular flow. For other protocols like
Telnet, SSH or TFTP a stable identification after the 10th
packet is possible. Figure 6 shows the F-Measure for 30
trained flows and 20 inspected packets depending on the
threshold.

5 10 15 20 25 30

0

20

40

60

80

100

Number of Inspected Flows

F
-M

ea
su
re

in
%

BitTorrent

Flash Videos

FTP

HTTP

IRC

MMS

MPEG-TS

OGG Streams

POP3

RTMP

RTP (UDP)

SMTP

SSH

SSL

Telnet

TFTP

WMV Streams

Figure 5. F-Measure Depending on the Number of Inspected Packets

This threshold value is compared with the sum of the
values of the attribute meters. If it is equal or lower, the
protocol is known. If it is higher than the threshold, the flow
is marked as unknown. It also helps to avoid the detection
of false-positively identified flows. The optimal value was
experimentally determined as 13, using the results presented
in figure 6. At this point an optimal identification with
a good precision is possible and unknown protocols are
correctly identified as unknown.
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D. Classification

The currently implemented classificator only distinguishes
between media and best-effort traffic. Media traffic is marked
for expedited forwarding, whereas best-effort traffic is not
marked. This allows for prioritisation of real-time and pro-
gressive download flows.

V. CONCLUSION

In order to enable self-organised, application independent
QoS in LANs, we presented an optimised implementation of
the SPID algorithm with a particular number of indicators
that allow for identification of protocols and applications



in near real-time. We archived very good results for plain-
text protocols like Telnet, SMTP POP3, IRC, etc., but
even if the payload is not human-readable good results
have been archived. Another advantage of our approach is
the flexibility of the level of granularity. For our purpose
it was important to look deeper into the HTTP to also
identify protocols which are tunnelled, like progressive video
downloads. To include new protocols for identification it is
sufficient to add at least 30 data set samples. This is surely
easier than looking for an unique application signature. The
math behind this algorithm is trivial, thereby a real-time
recognition even on low cost hardware is possible.
In contrast to Hjelmvik we included more protocols and
focused on media protocols, which we found worthy to
be prioritised. These were tested for their precision and
robustness. We took particular care of a small and fast
implementation and made a selection of different attribute
meters for better performance and more accurate identi-
fication. In addition, we added UDP support to the near
real-time identification and showed the feasibility. We also
showed that SPID is a appropriate approach for identification
of real-time protocols for self-organised QoS configuration.
Future work will focus on automated bandwidth estimation
for resource reservation for the identified media flows.
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