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ABSTRACT
Virtual Private Networks (VPNs) provide confidentiality and hide
the original IP address. Althoughmany VPN providers promise not
to record user activity, several media reports of data breaches show
that this is often not true. Tor, on the other hand, allows anony-
mous communication using onion routing and takes privacy and
anonymity seriously, but at the cost of performance loss. What
is missing is a sweet spot between VPNs and anonymization net-
works that supports bulk downloads and video streaming but pro-
vides countermeasures against untrusted VPN providers and Au-
tonomous System (AS)-level attackers.

In this paper, we present OnionVPN, an onion routing-based
VPN tunnel, that provides better bulk transfer performance than
Tor and offers additional security features over a VPN: (1) interme-
diate VPN nodes see only encrypted traffic, (2) protection against
AS-level attackers with a new path selection algorithm, and (3)
onion serviceswith a novel cryptographic NAT traversal algorithm
using the Noise protocol framework. We analyze 118 VPN provi-
ders, systematically compare them to our requirements and show
that OnionVPN is currently possible with three VPN providers.
An alternative to Tor for bulk traffic could relieve the Tor network
and provide a better experience for other users who need higher
privacy and anonymity features.
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1 INTRODUCTION
Virtual Private Network (VPN) protocols such as Internet Proto-
col Security (IPsec), OpenVPN1, and WireGuard [1] provide an en-
crypted network tunnel to other endpoints. Commercial providers
offer off-the-shelf VPN solutions to avoid setting up a VPN server.
There are manifold reasons for using such services. First, it pro-
vides an encrypted tunnel, which is especially helpful in untrusted
environments (e. g., free WLAN). Second, VPN providers can be
used to bypass geo-blocking or government firewalls. Third, VPN
protocols offer higher throughput than anonymization networks
such as Tor and the Invisible Internet Project (I2P).

Without full control of a VPN server, the user must trust both
the VPN provider and the data center where the server is located.
Commercial VPN providers typically promise not to record any
user activity. However, several media reports [2]–[5] from data
breaches show that this is often untrue. Ramesh et al. [6] also show
that traffic leaks during VPN tunnel failure are possible and expose
sensitive user data. In a recent work, Xue et al. [7] revealed a de-
sign flaw of most VPN providers that allowed an adversary to force
the victim to send the traffic outside the VPN tunnel. Both attacks
would not be possible with OnionVPN.

On the other hand, anonymization low-latency networks such
as Tor [8] and I2P [9] offer high anonymity, but with a performance
loss. The scientific community works hard to improve the through-
put of Tor [10]–[14], but there are still performance issues such
as the cross-circuit interference (CCI) problem [15]. Additionally,
through its circuit scheduling algorithm, Tor prefers bursty traffic,
such as web browsing, over bulk traffic, such as file-sharing [16].
The use of file-sharing protocols (e. g., BitTorrent) over Tor can po-
tentially compromise the anonymity of the users. Tor only works
with TCP based services.

What is missing is a sweet spot between VPN and anonymiza-
tion networks, which supports bulk downloads but provides coun-
termeasures against untrusted VPN providers and Autonomous
System (AS)-level attackers. In this paper, we present OnionVPN,
which offers better bulk transfer performance to Tor, with addi-
tional security and privacy properties to a VPN from an anonymiza-
tion network.We usemodern network separation technology (e. g.,
Linux namespaces) to improve security and avoid data leaks. Our
contributions are twofold: First, we present a ready-to-use open-
source Proof of concept (PoC) that implements onion routing with
1https://openvpn.net/
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Linux namespaces and WireGuard. Second, we present a theoret-
ical architecture and ecosystem similar to Tor that would include
onion services. Concretely, we make the following contributions
in this work:

(1) We developed an open-source PoC of OnionVPN based on
WireGuard and with Linux network namespaces.

(2) We analysed 118 VPN providers and showed that three are
suited for the use for OnionVPN and six providers partially.

(3) We evaluated the performance of OnionVPN and showed
that it outperforms Tor for bulk traffic.

(4) We developed a new path selection algorithm to avoid AS-
level attackers.

(5) We show with our PoC that OnionVPN can have onion ser-
vices as well.

(6) We designed a cryptographic Network address translation
(NAT) traversal algorithm using the Noise protocol frame-
work [17] that we used for onion services in OnionVPN.

(7) We designed an theoretical ecosystem for OnionVPN, that
allows a wider adoption.

Outline. Section 2 provides background on VPN and onion rout-
ing. In Section 3, we describe our threat model. We divided the pa-
per into two major parts: The first one is described in Section 4, in
whichwe describe the technical details of OnionVPN and evaluate
it in Section 5. The second one is Section 6, in which we describe a
possible ecosystem for OnionVPN. Section 7 contains the discus-
sion and limitations of OnionVPN and Section 8 discusses related
work. We conclude in Section 9.

2 BACKGROUND
This section provides background on Tor and VPN, particularly
WireGuard.

2.1 WireGuard
Most encrypted tunnel protocols nowadays are based on either
Transport Layer Security (TLS) or IPsec. For example, OpenVPN is
based on TLS 1.2 and uses a user-space TUN/TAP solution. TUN/-
TAP are virtual network devices that are defined by software, in
this case, OpenVPN. While TLS 1.2 has a long history of secu-
rity and privacy issues [18], IPsec suffers from its complexity [19].
WireGuard, on the other hand, is a novel VPN protocol operating
on Layer 3. WireGuard uses UDP as the basis; any in-order deliv-
ery and reliability of packets is the protocol’s responsibility that
goes over the tunnel. It is designed to run in the Linux Kernel2, so
it does not have to copy packets multiple times, which improves
the performance significantly compared to user-space TUN/TAP
solutions.

Complexity is an enemy of security. Therefore, WireGuard fo-
cuses on simplicity. The WireGuard implementation in the Linux
Kernel has less than 4000 Lines of Code (LoC). WireGuard’s pro-
tocol is based on the Noise Framework [17] and formally verified
[20]–[22]. WireGuard does not support cipher and protocol agility,
where sender and receiver negotiate the cipher suite. If security

2Besides the Kernel implementation, there are also user-space implementations in
Rust, Go, andHaskell.This allowsWireGuard to run on other Operating Systems (OSs)
such as Windows, MacOS, iOS, and Android.
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Figure 1: Example of how Onion Routing works in Tor. Al-
ice’s Tor client first contacts the Directory Authority (DA) to
get a list of Onion Routers (ORs). Then it encrypts her mes-
sage 𝑀 three times in reverse order and sends it to the first
Tor relay, also referred to as the Tor entry relay or Guard.
The straight green line contains traffic that Tor encrypts,
and the dotted red line is traffic that might or might not be
encrypted.

problems have been found in the underlying primitives, all end-
pointsmust update to a newer version.WireGuard uses Curve25519
for Elliptic CurveDiffie-Hellman (ECDH), ChaCha20 [23] and Poly-
1305 [24] for authenticated encryption, BLAKE2 [25] for hashing,
and SipHash2-4 [26] for hashtable keys. Static public keys (static
identities) must be manually exchanged a priori, similar to Secure
Shell (SSH). Optionally, an additional pre-shared key can be used
to make WireGuard post-quantum secure. Recently, Hülsing et al.
[27] introduced a post-quantum WireGuard variation, which pro-
vides post-quantum confidentiality and authentication.

WireGuard has additional security properties. Due to the previ-
ously exchanged static identities, a WireGuard instance does not
respond to any non-encrypted messages. This property makes an
exposed WireGuard endpoint stealthy protecting it from protocol
probing or port scanning. Additionally, all packet fields have a
fixed length, which hinders parsing related memory corruption at-
tacks.

2.2 Onion Routing
Onion Routingwas first introduced byGoldschlag et al. [9]. It works
by encrypting a message multiple times, like the layers of an onion,
as depicted in Figure 1. This encrypted message is sent to a net-
work of relays. Each relay removes one layer of encryption and
forwards the message to the next hop until all layers have been
removed. Usually, the message passes three relays. In backwards
direction, each relay adds its layer of encryption until the message
reaches the original sender.

There is no direct link between the sender and the destination.
Therefore, it provides an anonymous communication channel. Only
the entry hop knows the sender, and only the exit hop sees the
cleartextmessage and knows the destination. Nowadays, most web
traffic is TLS protected. In this case the exit node cannot see con-
tents but protocol metadata.
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2.3 Onion Services
Usually, only the user is anonymous to the destination; in the case
of Onion Services, the destination is also anonymous to the user.
Tor has deployed onion services since 2004 [28]. To connect to a ser-
vice, users need a so-called onion address [29], which is a base32-
encoded URL with the public identity key of the service, a version
field and a checksum, which ends with .onion. Additionally, a piece
of software that understands such a URL.

A service publishes introduction points in a distributed hash ta-
ble (DHT) to each point they build a circuit. A client uses a URL,
goes to this DHT and asks for these points. Before connection to
the services it choses a rendezvous point and builds a circuit to it.
Afterwards, it chooses an introduction point, builds a circuit to it
and introduces itself. The client sends the rendezvous point and
a secret string to the service. The service builds a circuit to this
point. The rendezvous point verifies the client’s secret. If the se-
cret matches, both circuits will be connected, and both parties will
be able to talk to each other.

Besides hiding the IP address of the destination, onion services
provide:

(1) Service Authentication: If a user connects to an onion service,
it can be sure that the URL and data from the service belongs
to it. An adversary cannot pretend to be the service without
the user noticing.

(2) End-to-end encryption: After the client and service are con-
nected to the rendezvous point the traffic is encrypted. The
encryption protects both ends, and no traffic leaves the Tor
network. But an attacker can still fingerprint an circuit [30]
and can distinguish between a normal and service circuit,
but defenses against this attack exists [31].

(3) NAT punching: An onion service does not need to open a
port on a public interface. It initiates communication with
the Tor network and offers the onion service inside of the
network. No port forwarding or NAT punching needed.

(4) Censorship resistance: A client with knowledge of the onion
address can look up the defined introduction points in the
distributed hash table. Multiple relays that change over time
store this information. However, without the onion address,
these relays cannot find out for which service they provide
this information. It is only possible to censor certain ser-
vices if all the relays involved work together.

(5) Client traffic is not trackable: Every time a client connects
to an onion service, a new rendezvous point is exchanged.
This makes it hard to track traffic from clients to a particular
service.

3 THREAT MODEL
We consider a similar threat model as Tor, where it is impossible
to defend against a global passive adversary but an adversary with
a limited network view, such as:

(1) AMalicious Provider that canmonitor all traffic.WithOnion-
VPN, providers do not have any personally identifiable in-
formation (PII), and every hop on the path has a distinct
provider, which makes it impossible to correlate sender and
receiver directly to each other. Except the provider used for

entry can observe the real IP address of the user. We can
fully defend against such an adversary.

(2) AmaliciousAS inherits the capabilities of aMalicous Provider.
In contrast to a provider, an AS can be on both ends of the
network path, which enables traffic correlation attacks, but
our path selection algorithm limits or prevents this possibil-
ity.

In the event of a malicious provider or AS, OnionVPN offers
sender anonymity andwith onion services receiver anonymity.The
threat model excludes providers and ASs that are controlled by
the same entity, which are referred to as siblings. Because this
property breaks the assumption that the adversary cannot observe
both ends.We also exclude fingerprinting attacks from adversaries,
that e. g., could identify the web browser or OS of the sender. Tor
Browser3 orMullvad Browser4 protect against browser fingerprint-
ing attacks. Other types of fingerprinting attacks like circuit or
website fingerprinting are not easily preventable. We also do not
consider censorship-resistance.

4 TECHNICAL DETAILS OF ONIONVPN
OnionVPN allows the creation of multi-hop circuits based on VPN
protocols. The only requirement for the VPN protocol is to trans-
port itself, which applies to all popular VPN protocols, including
IPsec, OpenVPN, and WireGuard. We are not aware of any VPN
protocol that does not have this property. This makes it possible to
nest a tunnel inside another tunnel. For example, if there are three
relays, one can build a tunnel to the first hop, then over this hop
a second tunnel to the next and so on. We assume intermediate
relays run only standard software.

A naive approach is to define a set of firewall rules to route pack-
ets through a chain of three network interfaces. Each interface is a
configured tunnel of a VPN protocol. The packet must go through
the interface of the exit relay, then the interface of the middle re-
lay and then the interface of the entry relay. Although this is pos-
sible, it is increasingly challenging to manage and error-prone. A
minor misconfiguration (e. g., IP address collision) could leak sen-
sitive user information [7], [32]. To solve this problem, our PoC
makes use of Linux network namespaces. WireGuard [33], IPSec
(strongSwan [34]), and OpenVPN integrate into the Linux network
namespaces infrastructure. But IPSec and OpenVPN need virtual
Ethernet (veth) interface pairs to chain the namespaces together.
Other OSs do not have network namespaces like Linux but could
use firewall rules instead.

First, we describe how we build a circuit with Linux network
namespaces.

4.1 Building a Circuit
Every process that is executed, by default, run in the default net-
work namespace called the root namespace. AWireGuard interface
remembers the network namespace in which it was created. All
outgoing packets will arrive in the initial namespace if we move
theWireGuard interface to another network namespace. For exam-
ple, to build a one-hop tunnel, the following steps are necessary,

3https://www.torproject.org/de/download/
4https://mullvad.net/de/download/browser/windows
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Figure 2: Example of how a circuit is build with WireGuard-based OnionVPN. In (a), we move the physical network interface
in its own network namespace. In (b), we create the VPN inside the physical network namespace and move it then to the root
namespace. In (c), every process can tunnel their network traffic through the VPN interface. In (d), the whole three-hop circuit
is shown.

which are depicted in Figure 2: First, we move all physical inter-
faces to a new namespace, which we name physical (see Figure 2a).
Second, we create a WireGuard interface in the physical names-
pace and add a default route to it. Third, we move it to the root
namespace (see Figure 2b). When the WireGuard interface is in
the root namespace, all processes can tunnel their traffic through
that interface. Fourth, every outgoing packet arrives in the phys-
ical namespace and goes through the routing table of this names-
pace (see Figure 2c).

For a three-hop tunnel, we create two additional namespaces,
entry and middle. Instead of moving the first WireGuard interface
to the root namespace, we move it to the entry namespace. Then,
we create a WireGuard interface in the entry namespace and move
it to the middle namespace. Then, we create a WireGuard inter-
face in the middle namespace and move it to the root namespace.
All running processes must use the interface in root namespace to
communicate with the Internet (see Figure 2d). WireGuard itself
plans to implement onion routing, but at the time of writing, it is
still on their to-do list [35]. If they do, we only need the physical
and root namespace to isolate processes from the physical inter-
faces.

4.2 Path Selection
AS-level attackers are a real threat to the Tor network [36]–[38]. If
an adversary can observe both ends of the path, a traffic correla-
tion attack can deanonymize users. Tor’s path selection algorithm
tries to prevent such a situation and, due to relay weights, also im-
proves the user’s performance. However, it does not actively pre-
vent a path from entering or exiting a destination with distinct Au-
tonomous System Number (ASN) [39] since Tor’s path selection
algorithm does not take ASs into account.

Before describing our path selection algorithm, we analyze the
AS diversity of Tor and VPN providers to get a better understand-
ing.

4.2.1 AS Diversity of Tor and VPN Providers. We collected the IP
addresses of 40 000 proxy servers from ten VPN providers and Tor.
We selected VPN providers based on the following criteria: the
number of available servers and if the VPN provider offers a server

list. The result is the following list of VPN providers: CyberGhost,
ProtonVPN, Surfshark, Windscribe, OVPN, iVPN, Mullvad, Nord-
VPN, PIA, and Ivacy. CyberGhost, ProtonVPN, Surfshark andWind-
scribe do not have publicly available server lists. We use a domain
enumeration provider5 to get an estimated list. For CyberGhost,
we only get 10 000 servers, which limits the data source. Ivacy
claims to have over 6500 servers, but its support site lists only 300.
We have the complete server list for OVPN, iVPN, Mullvad, Nord-
VPN and PIA. For Tor, we can use the latest consensus at that time
(2023-09-15 at 00:00).

For each server with a unique IP address, we assign one ASN.
We use the ASN database from the University of Oregon and their
Route Views Archive Project6. We compare the ASN and coun-
try diversity for Tor and the VPN providers. Tor has 918 different
ASNs, while all VPN providers combined have only 216. Similarly,
for 16 bit subnet prefixes, where Tor has 2158 and VPN providers
have 771. The top four ASNs for VPN providers contain 66 % of all
servers. In contrast to Tor, where the amount of all relays belong-
ing to the top four ASNsmake up 22% of all servers. Compare ASN
diversity in Figure 3.

The country diversity is better for the VPN providers, but to
resolve the IP address to country we use a database. Keep in mind,
that such databases are not necessarily reliable [40]. According to
our data collection (see Section 5), most VPN servers are in the US.

4.2.2 Algorithm. Due to the low diversity, our path selection algo-
rithm must be AS-aware; therefore, we adapted an AS-aware path
selection algorithm from Edman and Syverson [39].

VPN providers’ AS diversity is not as good as Tor’s, and ev-
ery provider can be considered one overlay AS. In that sense, an
overlay AS is very similar to what Tor calls relay families. VPN
providers havemore servers than Tor. In the case ofMullvad (Swedish
VPN provider) each server has on average 10Gbit/s [41]. The avail-
able bandwidth per server does not vary as much, making it un-
necessary to select servers by bandwidth weight or relay weight.
Instead, they can be selected uniformly at random after consider-
ing other attributes. We will show later in Section 5.2 a detailed
5https://www.abuseipdb.com/whois/
6ftp://archive.routeviews.org/route-views4/bgpdata/2023.10/RIBS/rib.20231005.1000.
bz2

https://www.abuseipdb.com/whois/
ftp://archive.routeviews.org/route-views4/bgpdata/2023.10/RIBS/rib.20231005.1000.bz2
ftp://archive.routeviews.org/route-views4/bgpdata/2023.10/RIBS/rib.20231005.1000.bz2
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Figure 3: Comparison of the ASNs diversity of Tor and ten VPN providers. Tor has 918 and the VPN providers have 216 ASNs.
Figure 3a compares the distribution of the number of relays per ASN. It shows that Tor utilizes more ASNs with fewer relays.
On the other hand, VPN-Prvoider have fewer ASNs but more relays in a single AS. Figure 3b compares the cumulative number
of relays per ASN. The top four ASNs contain 66% of all servers compared to Tor’s top four ASNs, which amount to 22% of all
relays.

performance measurement. In contrast to Tor, every server is an
exit relay.

Each network path must consist only of sets of non-overlapping
ASs or overlay ASs. At least the set from client to entry and exit to
destination should not intersect. This makes it impossible for one
entity to observe and compromise both ends. It is necessary be-
cause of the low AS diversity and top-heavy providers with many
servers.

ASs path inference or measuring is a computationally expen-
sive operation [39]. In the Tor network, measuring the network
path from a particular relay to a destination is only possible if you
are the operator. Due to how OnionVPN works, measuring the
network forward path is possible but not the backward path. How-
ever, it can be inferred by a complete AS path inference algorithm
or an approximation.

The path selection algorithm is shown in Listing 1. The algo-
rithm first selects a VPN provider from the set of VPN providers
uniform at random. The algorithm selects an entry node from that
provider and removes it from the list. The same procedure applies
to the middle and exit nodes. The lambda function has_overlap()
implements a AS path inference algorithm [39], [42].

1 def path_selection_default(nodes: Dict, has_overlap, client_ip,
destination_ip):

2 nodes = nodes.copy()
3 providers = list(nodes.keys())
4

5 # (1) Select an entry node
6 entry_provider = random.choice(providers)
7 entry_node = random.choice(nodes[entry_provider])
8 providers.remove(entry_provider)
9

10 # (2) Select a middle node
11 middle_provider = random.choice(providers)
12 middle_node = random.choice(nodes[middle_provider])
13 providers.remove(middle_provider)
14

15 # (3) Select an exit node

16 while True:
17 exit_provider = random.choice(providers)
18 exit_node = random.choice(nodes[exit_provider])
19 if has_overlap(client_ip, entry_node, exit_node,

destination_ip):
20 continue
21 else:
22 break
23

24 return [entry_node, middle_node, exit_node]

Listing 1: Simplified Path selection Algorithm in Python.

4.3 Onion Services
A feature of Tor is onion services [43], where both client and server
are anonymous. This section describes how onion services can be
integrated into OnionVPN.

Due to no additional software on the relays, connecting two end-
points yields the same challenges that two peers have to establish a
direct connection on the Internet. One problem that might occur is
that the client and server are behind a router with NAT. The num-
ber of intermediate hops does not matter. Usually, VPN providers
enable users to offer services by port forwarding. To do so, the user
connects to a relay and opens a port via API call (or the provider’s
web interface) to forward incoming traffic to a service that is lis-
tening locally.

In the Tor network, connecting clients and services is not di-
rectly visible to an outside observer, but there are circuit finger-
printing attacks [30] to distinguish onion services from standard
circuits. This can help to deanonymize users or operators. In our
case, this is directly observable when connecting both circuit ends,
because we use a WireGuard tunnel which would reach a non-
default port of the VPN provider’s relay.

4.3.1 Port Forwarding. Port forwarding is the easiest way to con-
nect the client and server, and it requires no additional software.
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Unfortunately, VPN providers that have supported port forward-
ing no longer offer it because of abuse [44], [45]. Abuse is easily
possible because a web server can be reached from a normal web
browser with only a DNS entry. An attack [46] against port for-
warding is known to leak the actual IP address of a user.This attack
is rendered useless if the VPN is implemented via Linux network
namespaces. Next, we describe our NAT traversal algorithm to en-
able onion services in OnionVPN.

4.3.2 Introduction Point Proxy. Without port forwarding, we need
another way to bypass NAT. Other protocols, such as WebRTC
and Voice-over-IP (VoIP), use Interactive Connectivity Establish-
ment (ICE) [47]. However, ICE is not suitable for our needs. First,
ICE needs an already established connection to signal the neces-
sary information, which we do not have with onion services. Sec-
ond, ICE could reveal the actual IP address when not using Linux
network namespaces. Third, if symmetric NAT7 [48] is used on
one side, ICE would evade to a Traversal Using Relays around
NAT (TURN) server. For these reasons, we have developed a NAT
traversal algorithm, which we call Introduction Point Proxy (IPP),
that can be used for onion services. Our design goal is to allow both
ends to connect to each other but make arbitrary data exchange
difficult during the connection phase over IPP. Client and service
need to exchange at least the following information:

• The IP address and port of the IPP; and; public key of the
service.

• The public IP address, port and public key of the client.

Our protocol is based on the Noise Framework [17] and we use
Noise_{IK,KK}_25519_ChaChaPoly_BLAKE2s. These are two protocol
names from Noise which only differ in the handshake pattern and
comparable to TLS cipher suites. Each part separated by an under-
score allows the use of a different algorithm, e. g., the first is for the
handshake and the last for the hash function. Noise is just a con-
stant prefix. {IK,KK} are our handshake patterns. IK is used for the
IPP and KK is used for the peer-to-peer communication between the
two hops. If the first letter is an I, then the public static key of the
sender will be immediately transmitted to the destination in clear-
text. If the first letter is a K, then the public static key of the sender
is known to the destination. If the second letter is a K, then the pub-
lic static key of the destination is known to the sender. Depending
on the handshake pattern, the payload security and identity hid-
ing properties are different. For these two patterns the handshake
requires one message from the sender and one from the destina-
tion. Both have the same payload security properties. 25519 is the
elliptic curve that is used for the ECDH. ChaChaPoly provides au-
thenticated encryption. BLAKE2 is the hash function to ensure data
integrity.

The first message from the source (service or client) to the IPP is
prone to a Key-Compromise Impersonation (KCI) if the IPPs long-
term private key has been compromised, as well as the first mes-
sage of the second handshake from client to service if the client
is compromised. This is not a problem in these two cases because

7Symmetric NAT is a network configuration that assigns a unique external IP address
and port combination to each outbound connection from a device, making it difficult
for unwanted incoming data to reach that device.

clients create a new key pair for each connection attempt, and ser-
vice and IPP should update their key pairs regularly. The same ap-
plies if we look at it from the point of view of the destination, but
additionally, the message is prone to a replay attack. The second
message from the destination (IPP or service) to the source (client
or IPP) has weak forward secrecy if the sender’s long-term private
key has been compromised. This is the same situation as the first
message. After that, the transport phase starts with authentication
resistant to KCI and strong forward secrecy. You can find the data
flow of IPP in Figure 4:

(1) At first, the service does an IK handshake through Onion-
VPN hops with the IPP.We assume a list of IPPs, each with a
public key available to the service. It will transmit its static
public identity key to the proxy immediately (I ), and due to
the list it knows, the public key of the proxy (K).

(2) It will instruct the proxy to listen for client connections.
This logic is implemented on the application layer, not on
the transport layer. The proxy will use the service’s public
key an identifier for the service. This public key is authen-
ticated due to the Noise protocol. The service will wait for
client connections and publish its connection information
as a URL and/or in a directory service.

(3) The client will use the connection information from the ser-
vice to connect to the proxy. It also does an IK handshake
with the proxy. We assume a list of proxies, each with a pub-
lic key available to the client.

(4) The client will send an application-level connect command
to the proxy using the service’s public key.

(5) The proxy will send the service’s public IP address and port
to the client.

(6) The proxy will send the client’s public IP address, port, and
public key to the service.

(7) Both client and service will send empty UDP packets to each
other to punch a hole through their NAT.

(8) Both will perform another Noise KK handshake. To ensure
that both parties have the same view of the connection, each
handshake packet must contain all prologue information: IP
address and port of the service and IP address, port, and pub-
lic key of the client. Each peer validates the received infor-
mation with its own view and fails the handshake if there
is a difference. This mechanism is supported by the Noise
protocol.

(9) Further information can now be exchanged via the estab-
lished peer-to-peer channel.

(10) Each party configures a WireGuard interface over the same
connection. Everything afterwards is service-dependent, but
the communication will take place over a WireGuard tun-
nel. Both ends must configure a keep-alive signal that sends
a packet in certain intervals to keep the tunnel alive. With
WireGuard, both interfaces can configure persistent_keep-
alive=25, to send a UDP packet every 25 s.

Amalicious IPP can deny the service, but that is not preventable.
Such a service must be removed from the available list. After a
client’s connect attempt, it can send an alternate IP address, port,
or public key to the service.This is also not preventable and is effec-
tively a Denial-of-Service attack. It can send an arbitrary IP address
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Figure 4: Shows a data flow graph of our NAT traversal algo-
rithm IPP.

and port to the client. However, the client can detect this during
the second peer-to-peer handshake (see step 8 in Figure 4) because
we assume the service’s public key is known to the client over a
separate trusted channel. If the second handshake succeeded, the
client can be sure that it connected to the correct service.

4.3.3 Internal Introduction Point Proxy. The IPP can be located in-
side of the VPN provider’s network. This way, a malicious actor
cannot abuse the IPP without accessing the VPN network first. On
the other hand, this requires client and service to be connected to
the same VPN provider. This approach is closer to how Tor offers
onion services.

5 EVALUATION
This section describes the evaluation of the performance of Onion-
VPN and the suitability of VPN providers.

5.1 Suitable VPN Providers
There are hundreds of VPN providers, but only a subset meets our
needs. OnionVPN has the following anonymity and technical re-
quirements for a suitable VPN provider:

(1) No PII required to get access: An account is just a random
number or just a username and password.

(2) At least one anonymous payment option: Payment is possi-
ble via cash, voucher or privacy-preserving cryptocurrency
(like Monero, Dash or Zcash).

(3) Registration and payment is possible via Tor .
(4) They support WireGuard: This is important for our technical

implementation but not a general limitation.
(5) Available server list: A list of all servers with each server’s

public key and IP address.This list is important for an offline
path selection algorithm (see Section 4.2).

Other properties could be included, such as not logging unnec-
essary data, giving law enforcement access to their network, or try-
ing not to mislead users with properties that a VPN cannot have.
However, these are not directly measurable or ambiguous and will
be excluded.

Table 1: List of all VPN providers that fully and partially suit
our requirements for using OnionVPN.

Provider Suitable Countries # of Server Server List WG Access Payment

IVPN 35 81 3 3 Random ID Cash, Monero
OVPN 20 100 3 3 Credentials Cash, Monero
Mullvad 41 667 3 3 Random ID Cash, Monero, Voucher
Anonine 32 43 3 3 E-Mail Monero
Hide.me 49 66 7 3 E-Mail Monero
AirVPN 23 250 7 3 E-Mail Monero
ProtonVPN 67 2914 3 3 E-Mail Cash
VPN.ac 21 N/A 7 3 E-Mail Monero
Windscribe 63 N/A 7 3 Credentials Cash, Monero

In order to answer these questionswe evaluate various providers.
As a starting point, we use a list from a review website8 and add
other providers that are not yet included. We collect information
about the provider by visiting each individual website.

Our list contains overall 118 VPN providers. Appendix A con-
tains Table 2 that shows a list of all providers. We had to exclude
54 providers because they do not exist anymore, their website does
not work, they offer only a mobile application or do not offer their
service to non-business customers. Only three fulfill our needs:
Mullvad, IVPN and OVPN, see Table 1. The first two offer usage
without asking for PII by utilizing a random account number as an
identifier and supporting anonymous payment methods (Cash and
Monero). The last provider asks for a self-chosen username/pass-
word combination but no further PII and supports Monero. These
providers have a filled circle in the table. Providers with a half-
filled circle nearly support all requirements, e.g. ProtonVPN has
a server list, WireGuard and an anonymous payment method but
requires an email address for their account.

The most common payment methods are credit cards and Pay-
Pal, 39 support some non-privacy-preserving cryptocurrency, only
nine support anonymous payment methods, 15 have a server list
available, and 33 support WireGuard.

5.2 Performance Evaluation
This section evaluates OnionVPN’s performance in a local and In-
ternet environment. The local environment helps us understand
the upper limits and removes performance differences between
VPN providers. The Internet environment helps us understand the
practical performance implications.

5.2.1 Experimental Setup andMethodology (Internet). In this setup
we will use our PoC, which we named Vad, that is implemented in
Python and supports multiple VPN providers. It implements our
Path SelectionAlgorithm, can build circuits withmultiple hops and
supports Onion Services. The latter implements only the simplest
connection method with IPP, more details in Section 6.1.2. You can
find the source code at: https://github.com/iisys-sns/vad.

We use this PoC with three VPN providers, namely NordVPN,
ProtonVPN, andMullvad.We selected those VPN providers accord-
ing to the technical requirements from Section 5.1. However, we
ignore the anonymity requirements for these experiments because
we emphasize the number of servers to evaluate the performance.

8https://vpn-services.bestreviews.net/vpn-providers

https://github.com/iisys-sns/vad
https://vpn-services.bestreviews.net/vpn-providers
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The client uses our path selection algorithm from Section 4.2. Addi-
tionally, we measure Tor against OnionVPN in specific scenarios
to get further insides.

Every 5min our measurement script builds a new circuit. The
circuit consists of three random servers from the selected VPN
provider in random order. WireGuard does not connect to another
server unless we transfer data, so we send an ICMP echo request
(ping) to activate the circuit. Afterwards, we record ten pings to a
measurement server in Germany and run a traffic generator called
tgen with a model comparable to the performance measurements
of the public Tor network [49] and Shadow simulations [50]. Our
measurement server is running Ubuntu 20.04 LTS with Kernel ver-
sion 5.4.0-173 and has a 2.5 Gbit/s Internet connection.

We use the tgen model to take five measurements, each 1min
apart from the other, with the same circuit, similar to Shadow [50].
However, the public Tor network [50] takes one measurement ev-
ery 5 minutes. Each of our measurements transfers a file with a
random size of 50 kB, 1MB, and 5MB. We chose those file sizes to
compare our results with the public Tor metrics. Even though we
chose a random size, we ensured each file size was measured with
the same probability.

However, the public Tor network and Shadow simulations do
not use an equal probability. They transfer smaller file sizes more
often. We use the same parsing and analysis tools from tgentools
as Tor and Shadow. Additionally, we measured the goodput (the
actual useful data without overhead) over 60 s with iperf3 for 6 d
every 12min.

5.2.2 Experimental Setup and Methodology (Local). For our local
measurements, we use a server with Arch Linux, Kernel 6.9.7-1,
and an 8-core AMD Ryzen 7 3700X. The measurements are sim-
ilar to the Internet measurements but take place in an emulated
network with Linux network namespaces. For Tor, we use a 0.1 %
network that is generated by tornettools in version 2.0.0 and uses
only one client with seven relays. For OnionVPN, we configure a
static circuit.

We build the network and then execute a script 30 times that
performs the following actions: Run a traffic generator called tgen
with a model comparable to the performance measurements of the
public Tor network [49] and Shadow simulations [50]. We run the
model 10 times, each measurement transfers a file of 50 kB, 1MB,
5MB, 10MB, and 20MB with equal probability. We use iperf3 to
measure the goodput over 60 s.

Tor and OnionVPNmust connect or build the circuit during the
first measurement. Tor will build a new circuit every ten minutes,
but Tor can pre-build these and it will not have any influence on
the measurements. OnionVPN has a static circuit, but with either
tgen or iperf3, a new TCP connection will be used for every mea-
surement. Tor might have a slight advantage here because it could
use an already established connection between two ORs and the
CCI problem is not present. Using Shadow simulations for Tor and
OnionVPN would be better, but WireGuard is kernel-based, mak-
ing it difficult to simulate. There are user-space implementations,
but whether they would be compatible with Shadow is unclear.

Wemeasure the following scenarios: no circuit latency and packet
loss to get a theoretical upper limit; circuit round-trip time (RTT)
of 352ms and no packet loss; and; circuit RTT of 352ms and 0.1 %

packet loss. The latency is derived from the median latency from
our Internet measurements. The packet loss is evenly distributed
across all packets and the value is based onVerizonmeasurements [51].

5.2.3 Results andDiscussion. Figure 6 shows the local performance
measurements. First, the measurements in Figure 6a show that the
upper bound for Tor with its end-to-end congestion control [52]
can reach around 300Mbit/s, whereas OnionVPN can reach up to
1100Mbit/s. Second, the rest of the measurements in Figure 6b–h
show that OnionVPN is faster than Tor, independent of the file
size. However, if we add latency to our local measurements, one
can see in Figure 8 that OnionVPN is faster for larger files start-
ing with 5MB. If we add packet loss, OnionVPN performance is
overall worse than Tor’s; see Figure 9. As a reminder, Tor builds its
circuits with cascading TCP connections from client to entry node,
from entry to middle, from middle to exit and from exit to desti-
nation. OnionVPN utilizes a single TCP connection to the destina-
tion, which is nested inside three WireGuard UDP packets. Thus,
window size increases faster in Tor since we have multiple TCP
connections between ORs; therefore, the window updates show a
faster effect. Due to the end-to-end congestion control [52], Tor no
longer has a fixed window size. However, the local measurements
ignore network load and CCI [15], negatively impacting Tor’s per-
formance.

Figures 5e–g show the results for Internetmeasurements. Onion-
VPN is slower while transferring 50 kB but faster in the case of
1MB and 5MB (see Figure 5f and 5g).

It is slower for 50 kB because Tor has cascading TCP connec-
tions, while we only have one TCP connection from client to des-
tination. A cascading TCP setup can scale its congestion window
faster because of the faster feedback from its intermediate nodes.
In our case, we need to wait for a complete circuit RTT until we
can scale our congestion window, which results in slower transfer
times for smaller files.

Our measurements with iperf3 (goodput measurements) over
60 s in Figure 5a show that this is also true for larger transfers.
Thesemeasurements show amedian goodput of around 100Mbit/s;
10 % of transfers have more than 300Mbit/s. This is in contrast to
Figure 5c, which shows goodput up to 2.5 Gbit/s, but this only mea-
sures short-time performance. Unfortunately, we have no compar-
ison with the public Tor network since the Tor metrics project does
not have performance measurements with more than 5MB. Over-
all, OnionVPN is faster for larger transfers.

Tor has six vantage points for performance measurements in
Germany, China, and the USA. We have only one vantage point
in Germany. It needs to be clarified how well these vantage points
from Tor are connected. Our vantage point has a 2.5 GB/s connec-
tion; we assume this is the same as Tors. Most of Tor’s relays are
located in Germany, and most of our servers are in the USA. De-
spite these differences, the circuit round trip time matches primar-
ily except for the worst 8 % (see Figure 5d).

6 ONIONVPN ECOSYSTEM
The Tor community is doing a fantastic job establishing an ecosys-
tem that involves thousands of volunteers. Tor is free of charge,
therefore removes any payment traces that we have in OnionVPN.
If a user wants to use a VPN provider, she/he needs to register an
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Figure 5: Internet measurements of Tor versus OnionVPN. (a) The Cumulative distribution function (CDF) of the average
goodput over 60 s measured with iperf3. The goodput CDF while downloading between (b) 0.5MB to 1MB and (c) 4MB to 5MB;
and; (d) the CDF of the circuit round trip time. The CDF transfer time in seconds of (e) 50 kB, (f) 1MB and (g) 5MB.
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Figure 6: Performance measurements that compare Tor against OnionVPN in a local setup. This setup has no latency and
shows the theoretical upper bound for both on one system.The first plot show the goodput over 60 s measured with iperf3. The
next two plots the goodput between transferring 0.5MB to 1MB and 4MB to 5MBmeasured with tgen. Afterwards the time to
last byte (TTLB) of various file sizes.
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account. An account might allow one or more devices access to
the service. Even in the best case where it is only an account num-
ber, it forms a long-term pseudonym. The user will make regular
payments to extend access. That makes it easier for a malicious
provider to track a user. We will introduce a system that removes
this long-term pseudonym and makes it usable for OnionVPN. In
the best case, VPN providers would support such a system. This
system would also improve the situation for regular VPN users.

Instead of having a long-term account, users buy a public key
slot using an anonymous payment method. Your device will gen-
erate the private key, and the public key will be inserted into this
slot during the payment process.The public key is now the account
number. This key pair does not allow direct access to the VPN ser-
vice. Instead, it provides another empty public key slot that will
allow access. We will call the first key pair long term key pair or
account key pair and the second ephemeral key pair or device key
pair. In the simplest case, both have the same lifetime.The account
key pair allows us to create or update our device key pair. If we up-
date our device key pair, the public key will be pushed to the VPN
provider’s proxy servers, which will give us access.

6.1 Onion Services
This section describes how onion services could be integrated into
the OnionVPN ecosystem. We have already shown the feasibility
of onion services inside OnionVPN in Section 4.3. We will present
different alternatives that have different benefits and weaknesses.
The biggest difference to Tor is that the relays themselves do not
have supporting software, and access to them is expensive. VPN
providers could support OnionVPN, but that would require an
agreement on a standard interface.

This section is organized as follows: In the first section, we de-
scribe how a client can find an onion service. The following three
subsections use the technical connectionmethods and describe the
whole process with introduction and rendezvous points. See Fig-
ure 7.

6.1.1 URL and Directory Service. Without a directory service, the
relevant connection datamust be encoded into theURL.Thiswould
at least include the IP address and port of the introduction point
and the service’s public identity key. This scheme is only viable
for short-lived services with a limited user base. For a broader user
base, a Tor-like directory service is necessary, where only the pub-
lic identity key is encoded into the URL. Onion addresses or URLs
for services in Tor have a public key, a checksum and a version
field in a base32-encoded string which ends with .onion.

6.1.2 Simplest Implementation. A straightforward implementation
uses port forwarding as a connection method.This is not much dif-
ferent if we use a normal VPN, but it would have only one relay.
In our case, there could be multiple hops. This relay plays the role
of introduction and rendezvous point. See number one inside Fig-
ure 7a. The first step the service needs to do is to tell the client
where it is listening for connections; this can be done by encod-
ing all necessary parameters into a URL. In the second step, the
client must connect to the services using these parameters. If port
forwarding is not available, it is also possible to use IPP as a con-
nection method. See number two inside Figure 7b.

The disadvantage is that there is only one known location; it
allows an adversary to easily monitor traffic, censor the service
or launch a Denial-Of-Service attack. But it has advantages over a
normal VPN. It uses multiple hops, which hides the location of the
service, and every NAT on the way does not matter.

6.1.3 Separate Introduction Point and Rendezvous Point. In this sec-
tion, we will use IPP as a connection method (see Section 4.3.2)
since port forwarding is no longer widely supported. Separating
introduction and Rendezvous Point (RP), see Figure 7c, makes it
harder to monitor client traffic. If they built a new circuit or reused
an old circuit, it makes it easier or harder for an adversary. Tor
does not reuse circuits for e. g., RP, but in our case, it makes sense
to think about it because building a circuit costs money, because of
path selection algorithm with three hops or three distinct provider.
To access each provider you need to pay a fee. The cost is limited
to the number of suitable providers.

If we would build a new circuit for RP, this circuit is only used
for a short amount of time. Reusing a circuit means that only one
circuit or only a few circuits are used for an extended amount of
time. If both built a new circuit, this is comparable to Tor. If the
client reuses a circuit, then the same service could track a client,
and if many services collude, they could assign the communication
to one client. If only the service reuses a circuit, an adversary could
easily monitor the traffic of many clients. If both reuse circuits, an
adversary can also easily separate clients from each other and track
them over a long period of time.

Other benefits of this separation are: It provides location hiding
of the service due to multiple hops. During the introduction and
rendezvous phase, all communication is end-to-end encrypted. In
the rendezvous phase, the service and client communicate over a
WireGuard tunnel, so the service’s underlying protocol does not
matter and is not directly visible to an outside observer. The client
can be sure it communicates with the correct service in any phase,
and during the introduction phase, the client gives the service its
public identity key. Afterwards, all communication is end-to-end,
authenticated, and peer-to-peer. The IPP helps overcome any NAT
on the way, as long as it is not symmetric.

6.1.4 Key Blinding and Introduction Points. Key blinding means
that every Introduction Point has is own blinded pair and its loca-
tions change over time without relying on a distributed hash table
on the relays themselves. We will use Tor’s Key Blinding scheme
and the algorithm to find the responsible Onion Service Directory
in the hash ring [43]. As already mentioned, we do not store any
data on the relays; we use this algorithm instead to find the loca-
tion of our Introduction points.

This algorithm requires the following input arguments. Three
global scalar values; a shared random value (SRV ); the time period
(TP); and howmany introduction points (IPNUM).The SRV is just a
nonce that changes with each TP. TP is just an integer that specifies
in which period we are, it does not say anything about how long a
period is, in the case of Tor, it changes every 24 hours. IPNUM spec-
ifies the minimum number of Introduction Points a service listens
on. Additionally, we need a list of introduction points, each with
an identity key pair. All of this data can be stored in a Directory
Service.
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Figure 7: Three examples of how client and service can con-
nect. The first image is with port forwarding, where the in-
troduction and rendezvous points are not separated.The sec-
ond image is the same as the first but with the IPP. The last
example separates the introduction and rendezvous point,
and uses the IPP.

Each service has its identity key pair and up to IPNUM blinded
key pairs derived from its initial pair. It needs two sets of blinded
key pairs, one for the current TP and one for the last TP, so clients
that do not have a current consensus can still connect. The ser-
vice will take the list of Introduction Points and calculate for each
a hash that includes its public identity key, SRV and TP. It sorts
this list by the hash value to get an ordered list of Introduction
Points. For each of its blinded key pairs, it calculates a hash over
the blinded public key, IPNUM and TP, and finds the closest match
in the ordered list of Introduction Points. Each match is an Intro-
duction Point where it will listen for clients.

A client has only the public identity key of a service. It gets this
key through the URL (see Section 6.1.1) but can easily calculate the
blinded key.This key can do the same calculation as the service and
can find all Introduction Points. The downside of this approach is
that Introduction Points have only a derived key pair rather than
a randomly generated one. It could be expensive for service opera-
tors, especially for a Tor-like setup. Finding a balance between cost
and anonymity is crucial.

6.2 Key Selling Onion Service
If VPN providers would not widely support the key selling scheme,
which was dissected at the beginning (see Section 6), it is possi-
ble to write an onion service that is reachable over Tor. Usually,
providers give users an account that is usable with multiple de-
vices. Each device has its key pair. If a user wants access to a VPN
provider, they can generate a new key pair, go to that service and
request to insert their public key as one device. The service needs
to check if an account for that provider is available and has a free

device slot. If it has not a free device slot, it needs to buy a new ac-
count. After that, it can request a small fee from the user and allow
the usage for a fixed time frame. The public key will be inserted if
the user pays it using an anonymous payment method. After that,
a user has access.

7 DISCUSSION AND LIMITATIONS
Our intention is not to develop an alternative to Tor. However, bulk
downloads are a problem for the Tor network and often do not
need Tor’s privacy and anonymity features. Thus, OnionVPN pro-
vides an alternative for userswho use the Tor network to download
large files or use video streaming.This relieves the Tor network and
provides a better experience for other users who need privacy and
anonymity features. Next, we will discuss some limitations.

Choosing a provider uniform at random, as OnionVPN does in
the first step of the algorithm, creates a load balancing problem.
Smaller providers will get disproportionate amounts of traffic to
the number of servers or bandwidth they have. On the other hand,
an increase in traffic will result in an increase in revenue, which
will in turn allow them to extend their capacity.

We only consider three providers as suitable: Mullvad, OVPN
and iVPN. Due to the low AS diversity it is possible that AS’s
and Internet exchange points (IXes) are heavily connected to each
other and there might not be an ideal network path without inter-
sections. A stochastic path selection algorithm that minimizes the
risk of compromise as suggest by Nithyanand et al. [53], could help
here. Unfortunately this kind of path selection algorithm is not
attractive for VPN provider’s business models, because it prefers
smaller providers andmight help them grow. However, OnionVPN-
support might help a provider to acquire new users or increase
reputation.

Because access to the relays is expensive, it makes it difficult to
find a good balance in favor of anonymity.

8 RELATEDWORK
8.1 Virtual Private Networks
Some VPN providers support a two-hop solution, which they offer
under various names such as “Double VPN” [54], “Secure Core” [55],
or “Multihop” [56]. In the case of Mullvad, the packet gets en-
crypted by WireGuard for the exit hop and sent to the entry hop,
which forwards the packet. However, not in an onion-like fash-
ion where it would be encrypted twice for each hop. It does not
work across providers. The description of NordVPN is unclear, but
it looks similar to what Mullvad does.

VPN providers offer articles on how to use “Onion over VPN”
or “VPN over Tor” [57]–[59]. Some providers also directly support
these as features in their applications. A VPN server is the first or
last hop with a Tor circuit. There is no onion routing itself with the
VPN. One or two-hop VPN solutions will always be faster than a
three-hop solution.

Recently, Nym published NymVPN [60] for beta testing, which
has a fast and anonymous mode. The fast mode is comparable to
the existing two-hop solutions but uses onion routing. The anony-
mous mode uses two gateway nodes and three mix network hops
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with a novel onion encryption. Since NymVPN was released dur-
ing the writing of this paper, we could not compare the perfor-
mance, and we will leave this for future work.

8.2 Anonymity Networks
Anonymity networks can have lower, low, or high latency. In the
first category, are LAP [61], Dovetail [62], andHORNET [63].These
systems have high throughput, are implemented at the network
level rather than as an overlay network, are primarily stateless, and
offer limited anonymity guarantees. The second category contains
systems like I2P [9] and Tor [8], which are implemented as over-
lays, have lower throughput, are not stateless, can defend against
an adversary with a limited view and control of the network, and
are practical and usable. The last category is mixed networks, to
which, for example, Nym [64] belongs.These have very low through-
put but can defend against a global adversary.

Our work is closely related to Onion Routing [9] and belongs to
the low latency category. Currently, two practical, usable networks
implement this concept with different goals.

Tor [8] based on Onion Routing [9] is an overlay network that
is primarily designed for anonymous low-latency communication,
like web-browsing. It has around 8000 relays that are operated by
volunteers. A circuit through the network goes over three hops.
Each circuit is bidirectional and each message has multiple layers
of encryption, like an onion.

I2P [9] is a closed peer-to-peer overlay network that uses the
Internet, but usually, no communication to endpoints outside the
network occurs. Volunteers provide relays. I2P’s support for garlic
routing, a variant of onion routing, is characterized by unidirec-
tional tunnels. This means that two tunnels exist from the sender
to the receiver, a unique approach that sets I2P apart. Messages
have multiple layers of encryption, like an onion, but are bundled
with other messages, like a garlic bulb. It can defend against the
same adversary as Tor but makes traffic correlation attacks more
difficult.

8.3 Path Selection
A user can be de-anonymized if an adversary can observe both
ends of a Tor circuit. IXes and ASs are in a position to do that,
but Tor’s path selection algorithm is not AS-aware. This problem
is not exclusive to Tor; all low-latency anonymity networks have
this problem.

A user can be de-anonymized if an adversary can observe both
ends in a low-latency anonymity network. Certain network-level
attackers on the level of AS or IXes can do that. Tor’s path selection
algorithm is not aware of these adversaries. Previous work used
path selection algorithms as countermeasures for Tor that are AS-
aware [39], [65]–[68] or measure the extend of the problem [36],
[38], [53], [69]. Nithyanand et al. [53] shows that without counter
measures 37 % to 85 % of paths could be compromised.

Edman and Syverson [39] evaluated their path selection algo-
rithm by choosing relays by unique ASN, unique Country, or unique
ASN path. They found out that the first two are similarly effective.
The latter builds upon complete path inference between the client
and the entry node and between the exit node and the destination.
The network path between both can cross different ASs and at least

both paths must have non-intersecting sets of ASs. This is com-
plicated by routing asymmetry, where packets travel differently
forwards and backwards. A complete AS path inference algorithm
is computationally complex, so they only proposed a heuristic. A
tunable path selection algorithm was introduced by Akhoondi et
al. [65] which “reduces the median latencies by 25 % while also de-
creasing the false negative rate of not detecting a potential snooping
AS from 57% to 11 %”.

9 CONCLUSION AND FUTUREWORK
In this paper, we presented OnionVPN, which brings onion rout-
ing to standard VPN protocols and protects against untrusted VPN
providers. We analysed 118 VPN providers and found that only
three would be suited and six partially suited for using Onion-
VPN. Using network namespaces, we avoid data leaking [7], and
with our AS-aware path selection algorithm, we protect against
AS-level attackers. We have shown that onion services are possi-
ble with OnionVPN and developed a cryptographic NAT traversal
algorithm to bypass NAT. Our performance measurements show
that OnionVPN is slower than Tor for smaller file transfers, but for
bigger file transfers, OnionVPN outperforms Tor. Thus, Onion-
VPN provides an alternative for users who use the Tor network
to download large files but do not need the same level of privacy
and anonymity Tor provides. That could also relieve the Tor net-
work and provide a better experience for Tor users who need pri-
vacy and anonymity from Tor. Additionally, we have presented an
OnionVPN ecosystem inwhichOnion services could implemented
on a large scale. If VPN providers do not support OnionVPN, we
propose self-hosted solutions, such as a key selling proxy, as an
alternative.

The following points we declare as future work: (1) Conduct a
more comprehensive analysis of the path selection algorithm with
more VPN providers, an ASN inference algorithm and added band-
width or load weights. Due to the low AS diversity, it is still un-
clear how many circuits can exist without an AS observing both
ends or how high the compromise rate is. (2) Create a simulation
of an OnionVPN network that is informed by real distributions to
better understand performance characteristics. (3) Find a balance
between cost and anonymity, e. g., Onion Services with separate
introduction and rendezvous points, where the service builds al-
ways a new circuit to the rendezvous point, give better anonymity
but also cost more. (4) Gain a better understanding of the implica-
tions of the proposed alternative services in the ecosystem. These
services introduce complexity which could be exploited to easier
de-anonymize users.
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Figure 8: Performance measurements compare Tor against OnionVPN in a local setup (see Section 5.2.2 for details about the
experimental setup). This setup has a circuit latency of 352ms but no packet loss for all experiments.
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Figure 9: Performance measurements compare Tor against OnionVPN in a local setup (see Section 5.2.2 for details about the
experimental setup). This setup has a circuit latency of 352ms and packet loss of 0.1 % for all experiments.

A FULL PROVIDER LIST
You can find a list of all VPN providers in Table 2.
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Table 2: List of all VPN providers

Provider Suitable Provider Suitable Provider Suitable

Mullvad Bitdefender Premium VPN Total VPN 7

OVPN Surfshark TorVPN 7

iVPN Hotspot Shield tigerVPN 7

Windscribe Liberty Shield SwissVPN 7

AirVPN Panda VPN SpyOff 7

VPN.ac ExpressVPN Speedify Review 7

ProtonVPN IPVanish Banana VPN 7

Anonine Avira Phantom VPN Betternet 7

Hide.me HMA VPN ZPN 7

Easy Hide IP VPN Unlimited SiteLock VPN 7

GhostPath SurfEasy TorGuard 7

ZenVPN Adtelly EarthVPN 7

CactusVPN NordLayer 7 UltraVPN 7

Shellfire VPN Norton Secure VPN 7 Opera VPN 7

PrivadoVPN BartVPN 7 Mozilla 7

SwitchVPN OverPlay 7

NoodleVPN Perimeter 81 7

WorldVPN PrimeVPN 7

FrootVPN Private WiFi 7

VPNTunnel proXPN 7

Hide My IP MyVPN 7

Le VPN Kepard 7

ZoogVPN LiquidVPN 7

boxpn Leafy VPN 7

VPN.ht ProxyServer.com 7

VyprVPN IronSocket 7

VPNArea Internetz.me 7

SlickVPN ibVPN 7

VPNSecure NJALLA VPN 7

VPN.asia HashtagVPN 7

FastestVPN Encrypt.me 7

AVG Secure VPN BullGuard VPN 7

Perfect Privacy Buffered VPN 7

PrivateVPN BolehVPN 7

Avast SecureLine VPN Proxy.sh 7

StrongVPN SecureTunnel 7

HideIPVPN RUSVPN 7

Atlas VPN VeePN 7

Anonymous VPN ZenMate 7

Bright VPN WeVPN 7

BTGuard Webroot WiFi Security 7

12VPN VPNLand 7

Private Internet Access VPNhub 7

ClearVPN VPNGhost 7

CyberGhost VPN VPN4ALL 7

F-Secure Freedome VPN Traffic 7

GOOSE VPN VersaVPN 7

GoTrusted USAIP.eu 7

PureVPN SaferVPN 7

Ivacy TunnelBear 7

NordVPN Trust.Zone 7
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