Verifying DRAM Addressing in Software

Martin Heckel’?, Florian Adamsky', Jonas Juffinger?, Fabian Rauscher?, and
Daniel Gruss?

! Hof University of Applied Sciences, Germany
2 Graz University of Technology, Austria

Abstract. In this paper, we introduce a novel approach to reliably
verifying DRAM addressing functions and function components from
software. We perform the first systematic analysis of 5 DRAM function
reverse-engineering tools on 2 different DDR3, 4 DDR4, and 4 DDR5 sys-
tem configurations, revealing a significant variance in the success rate of
these tools, from 0 % to 92.9 %. We discover the previously unknown rank
selection side channel and reverse engineer its function on two DDR4
and two DDR5 systems. These results enable novel DDR5 row-conflict
side-channel attacks, which we demonstrate in two scenarios: First, we
evaluate the DDR5 row-conflict side channel in a covert channel with
1.39 Mbit/s. Second, we evaluate the channel in a website fingerprinting
attack with an F; score of 84 % on DDR4 and 74 % on DDR5.

1 Introduction

Software-level security often assumes that hardware is functioning correctly and
without side effects. However, physical effects can undermine system security
with side-channel and fault attacks. One attack target is DRAM, the main mem-
ory in modern computers. There are side channels [27, 41], fault attacks [14,
5], and slowdown attacks [24] on DRAM, undermining a system’s confiden-
tiality, integrity, and availability. DRAM addressing functions can be used in
performance optimization, such as application-aware memory channel partition-
ing [25] or variable page sizes [38] for more efficient row-buffer usage. However,
DRAM side-channel and fault attacks also often use these functions: Pessl et al.
[27] presented the first DRAM side-channel attacks exploiting reverse-engineered
addressing functions. Seaborn [34, 33] used DRAM addressing functions for the
first practical Rowhammer exploit. Rambleed [17] exploits bit flips in attacker
memory, depending on inaccessible victim data bits and addressing functions.
DRAM addressing functions are defined by the CPU’s memory controller,
i.e., specific to the CPU model and the memory configuration. Consequently, it
is necessary to reverse-engineer the functions anew for every system. Prior works
utilize DRAM access timings [27, 40, 4, 8]. Helm et al. [9] reverse-engineered the
DRAM functions using performance counters. Most works did not verify the
functions systematically but only tested whether an attack succeeded. However,
Rowhammer bit flips can also occur with incorrect or even without addressing
functions, e.g., One-Location Rowhammer [5]. Only Pessl et al. [27] and Jat-
tke et al. [12] verified addressing functions using high-bandwidth oscilloscopes.

In this paper, we present a novel methodology to verify the correctness of
DRAM addressing functions purely in software. Our approach is based on the
fact that the theoretical success rate of DRAM side channel tests changes with
each function component. Consequently, we can verify the correctness of even
single output bit of the DRAM addressing functions purely from software. Thus,
we can identify incorrect function components and combine the outputs of mul-
tiple reverse-engineering tools to a complete and correct a set of functions. We
evaluate our approach on 10 systems and show that the maximum deviation from
theoretical values for correct functions is 0.76 % on DDR3, 0.52 % on DDR4, and
0.49 % on DDR5, indicating the high precision of our approach.

Based on our novel verification methodology, we present the first systematic
analysis of DRAM addressing function reverse-engineering approaches. We ob-
serve success rates of 92.9 % on DDR3, 85.6 % on DDR4, and 87.3 % on DDRS5 for
the full DRAM addressing functions with the best respective reverse-engineering
tool [27, 40, 4, 8, 12]. We show that 3 tools yield good results (i.e., &~ 90 % cor-
rect) on our DDR3 systems (Intel), 4 tools yield good results (i.e., ~ 80%
correct) on our DDR4 systems (Intel), and only 1 tool yields moderate results
(i.e., &= 60 % correct) on DDR4 (AMD) and good results (i.e., = 85 % correct)
on DDR5 (Intel). No tool yields good results on DDR5 (AMD).

Using our approach, we found an additional layer in DRAM addressing: There
is a measurable timing difference between addresses of the same rank and those
of different ranks. We strongly suspect this is due to the rank select commands
sent between accesses to different ranks. We are the first to reverse-engineer rank
addressing functions and show that using such functions increases the success
rate by 18.36 % to 36.11 % on different systems.

We built the first row-conflict covert channel on DDR5 with a true capacity
of up to 2.23 Mbit/s on DDR3, 0.66 Mbit/s on DDR4, and 1.39 Mbit/s on DDRS5.
Additionally, we evaluate our approach in a row-conflict side-channel website-
fingerprinting attack, identifying a single website out of 100 with an F} score of
84 % on DDR4 and 74 % on DDRS.

In summary, in this paper, we make the following contributions:

1. We present a new approach for DRAM address function verification in soft-
ware> based on computing deviations from the theoretical behavior.
2. We systematically evaluate 5 reverse-engineering tools on 2 DDR3, 4 DDR4,
and 4 DDR5 systems and show that none produce good results on all systems.
3. We discover a novel rank selection timing channel and reverse-engineer the
corresponding rank function on two DDR4 and two DDR5 systems.
4. We present the first row-conflict covert channel on DDR5?. with 1.39 Mbit/s.
5. We demonstrate a novel row-conflict-based side-channel attack on DDRS5,
allowing to distinguish 100 websites with an F; score of 74 %.
Outline. Section 2 provides background. Section 3 describes our setup. Section 4
presents our new function verification approach. Section 5 presents our DRAM

3 https://github.com/iisys-sns/DramaVerify
4 https://github.com/iisys-sns/DramaNg

https://github.com/iisys-sns/DramaVerify
https://github.com/iisys-sns/DramaNg

rank addressing insights. Section 6 presents our covert channel on DDR5, and
Section 7 our website-fingerprinting attack. Section 8 concludes.

2 Background and Related Work

This section discusses DRAM and DRAM addressing, covert channels, website
fingerprinting, and related work.
DRAM. DRAM cells consist of capacitors and transistors organized in rows and
columns, forming DRAM banks grouped into ranks on a DIMM [27]. DIMMs are
connected to the CPU’s memory controller via channels. Activating cells (reading
the data into a row buffer) is destructive, so content must be written back before
activating another row. Since capacitors lose charge over time, DRAM needs
periodic recharging, e. g., every 64 ms.
DRAM Addressing Functions. Addressing functions map consecutive mem-
ory into different banks, ranks, and channels to minimize bank conflicts. The
memory controller translates physical addresses via addressing functions into
DRAM components, i.e., channels, DIMMs, ranks, banks, rows, and columns.
Linear Addressing functions are used on systems where the number of all
DRAM components is a power of two. They are represented as a hexadecimal
bitmask, indicating which bits need to be XORed. For example, the addressing
function 0288000 corresponds to 100010000000000000002, indicating that the
19th and the 15th bit of the physical address needs to be XORed. Each function
distinguishes two states, meaning there are loga(npanks) addressing functions on
a system with npans DRAM banks. Reverse-engineering non-linear addressing
functions (which use operations other than XOR) remains an open problem.
Covert Channels. Various microarchitectural elements have been used in
covert communication channels [18], e.g., via CPU load [26], CPU caches [42,
45, 46, 22, 21, 23, 28, 7, 31], and the memory bus [44, 43]. Covert channels have
become a best practice to evaluate the capacity of side channels. Semal et al.
[35] present a DRAMA covert channel on DDR3 and DDR4 systems with up to
729 bit/s. Wang et al. [41] show that this channel also affects Intel SGX. Van der
Veen et al. [39] amplify the DRAMA channel by making all memory uncacheable.
In a simulation, Kushwaha et al. [16] showed certain secure cache designs can
also amplify the DRAMA channel from a simulated range of 2.73Mbit/s to
4.61 Mbit /s to 4.53 Mbit/s to 6.82 Mbit/s. The fastest DRAM covert channel to
date [27] achieves a capacity of up to 2Mbit/s on DDRA4.
Website-Fingerprinting Side Channels. A common scenario for side-channel
evaluation with low spatial resolution is website fingerprinting. Fingerprinting
attacks exploited Android data usage [37], browser memory usage [10], the power
side channel [29], cache occupancy [36], interrupt timing [3, 47, 30], SSD con-
tention [13], and timing side channels in the operating system [19], often achiev-
ing high F1 scores in open- and closed-world scenarios on the top 100 websites.
Related Work. Several Rowhammer exploits do not use DRAM bank ad-
dressing functions [14, 32, 5]. However, newer and sophisticated Rowhammer

exploits [32, 6, 4, 15, 11] use DRAM addressing functions to increase the num-
ber of bit flips with more targeted hammering.

Pessl et al. [27] reverse-engineered DRAM bank addressing functions from
software and used physical memory-bus probing for verification. Barenghi et al.
[2] and Marazzi et al. [20] also use the timing-based approach to reverse-engineer
DRAM addressing functions. Prior work often determines the correctness through
success rates of resulting attacks, e.g., the overall success rate of the full set of
addressing functions. In contrast, we demonstrate that the theoretical influence
of correct functions can be leveraged as ground truth to verify the correctness of
single reverse-engineered functions. While we also discover the rank selection side
channel that was previously unknown, we focus our verification on the known
row-conflict side channel with addressing functions from prior work (which did
not include rank selection functions).

DRAMDIG [40] is a knowledge-assisted tool to determine DRAM address
mappings and then run a double-sided rowhammer test for verification. Zhang et al.
[48] extended DRAMDIG to a Rowhammer testing tool using reverse-engineered
addressing functions. Frigo et al. [4] trigger bit flips in TRR~enabled DIMMs us-
ing a many-sided pattern with many aggressor rows, relying on reverse-engineering
DRAM addressing functions. Helm et al. [9] use performance-counter-based
reverse-engineering, focusing on Intel Haswell, Broadwell, and Skylake. Since
we also cover AMD, we cannot use their approach in our measurements.

Fewer works focused on AMD. AMD published functions on older CPUs [1]
but not for newer ones, where Heckel et al. [8] and Jattke et al. [12] recently
reverse-engineered DRAM addressing functions. They also reverse-engineered
DRAM addressing functions on DDR5 utilizing the row-conflict side-channel we
utilize for the attacks presented in this paper. Jattke et al. [12] verify the function
correctness with an oscilloscope, like Pessl et al. [27].

3 Experimental Setup

Our experimental setup consists of 2 systems with DDR3, 4 with DDR4, and
4 with DDR5 DRAM. Each system has a unique ID that follows the format:
S{DDR Version){Counter). All systems run a current version of Arch Linux
(6.8.7-arch1-1). Since rank addressing functions are a significant part of the ex-
perimental evaluation, we use DIMMSs with one or two ranks. If we have multiple
similar systems, we use a DIMM with one rank in one system and a DIMM with
two ranks in the other (see Table 1 for details). We use /proc/self/pagemap to
get physical to virtual addresses mappings.

4 Verification of DRAM Addressing Functions

This section shows how we verify DRAM bank addressing functions based on
DRrRAMA [27]. Rather than exploiting the varying timings between row hits and
conflicts to create a covert channel, we utilize this side channel to confirm the

Table 1: Systems used for experimental evaluation. The number of banks (npnk)
is the number of all banks in the system, e. g., there are "T‘L”if banks per rank.

System CPU Memory npnk ek~ System CPU Memory npnk Nk~ System CPU Memory nbnk Mrnk
& 5801 i5-3320M 4GiB 8 1 5401 i9-10900K 8GiB 16 1 S$501 i7-13700 16GiB 64 1

25302 i7-4800MQ 4GB 16 2 & 5/02 i9-10900K 8GiB 32 2 28502 i7-13700 16GiB 64 1
8 5403 5950X 8GiB 16 1 A&S8503 7700X 16GiB 64 1
5404 5950X SGiB 32 2 S504 7700X 16GiB 64 1

[
[an)
&

Frequency
—
)
2,

AL ILAALALLLLL AL

| | | | | |
m u f 2 Row Hits ¥ERow Conflicts
) 1 1
T T T T

T T T T T
740 760 780 800 820 840 860 880
Access Time as measured with rdtscp

—_
[en)
[=}

-3
[\
o
©
S
o

Fig. 1: Histogram of access times when accessing randomly selected pairs of ad-
dresses in a flush and reload loop. The gap around 825 T'SC cycles hints at the
threshold between row hits and misses on S404.

accuracy of the bank addressing functions. Although we use the same side chan-
nel from DRAMA, we utilize it differently, as discussed in Section 4.1 We verify
our approach using DRAM bank addressing functions reverse-engineered by five
existing tools [27, 40, 4, 8, 12]. Our criterion for selecting the tools was that
they were published in the last ten years and do not require features available
only on one architecture. We omitted Helm et al. [9] since their approach uses
performance counters exclusive to Intel CPUs from Haswell to Skylake.

4.1 Verification Steps

This section describes the steps to verify reverse-engineered DRAM bank ad-
dressing functions. First, we measure the threshold between a row hit and a
conflict before allocating 1 GiB of memory. We resolve the physical addresses
with elevated privileges, group the allocated memory based on the given ad-
dressing functions, and run the DRAMA side channel. We compute a success rate
for the addressing function from the number of row hits and conflicts.
Measure the Threshold between Row Hit and Row Conflict. We
allocate one 2 MiB Transparent Huge Page (THP) (512 single 4 KiB pages) and
measure the access time using the rdtsc instruction of the first (offset 0) and
second (offset 4 KiB) page within the THP. We repeat this for all other pages
within the THP, e.g., comparing the first and the third, and so on. Between
measurements, we clear the CPU cache with c1flush.

A histogram from the measured access times is shown in Figure 1. While we
expect the histogram to have two peaks, one for fast row hits and one for slow
row conflicts, there are three, two with row hit timings. This can be explained by
the fact that S404 has two ranks. We also performed this experiment on S401,

which has only one rank and only one row-hit peak. Accesses to addresses on the
same rank (rank hits) do not require the memory controller to issue a rank select
command between them. Access to addresses on different ranks (rank conflicts)
required the memory controller to issue rank select commands. For this reason,
those accesses are slightly slower. There are two ranks on 540/, and the addresses
are equally distributed over both ranks, so there are two peaks of similar size.
The histogram is analyzed to identify the threshold ¢t between the row hit peak
and the row conflict peak (around 825 for the histogram shown in the plot).
Grouping Addresses. We allocate 1 GiB and get the physical addresses from
/proc/self/pagemap. With 230 single addresses in 1 GiB, only a fraction (1%
by default) is used. We apply all reverse-engineered DRAM addressing functions
under test to the physical addresses. The bits are XORed, and the resulting bit
is considered a bit of the bank number. When n addressing functions are applied
to a physical address, there is an n-bit bank number. Finally, the virtual address
is added to the group to match the bank number computed before.
Verification. After address grouping, the row-conflict side channel [27] is used
for group verification. Only correct addressing functions lead to correct groups,
so it is sufficient to verify that the groups are correct to derive that the addressing
functions are correct. There are 2™ groups for n functions. Several address pairs
(a1, az) (we use 5000 by default, since this number yielded good results in a
brief comparison) are randomly selected for each group. Additionally, an address
(b1) from another randomly selected group is selected.

Then, we measure the timing of alternatingly accessing (a1, az2), expecting a
row conflict (t. > tr), and (a1, b1), expecting a row hit (¢5, < tr). Each of these
timing measurements is performed a few hundred times, and the median of the
measurements is used as the resulting value. If both timings are correct, t. > tr
and t;, < tr, the address pair is considered to be grouped correctly.
Evaluation. We compute the share of correctly grouped pairs from all address
pairs, resulting in a correctness measure for reverse-engineered DRAM bank
addressing functions. In Section 4.2, we experimentally evaluate our approach.

4.2 Experimental Evaluation

We evaluate our approach with the following reverse engineering tools: DARE [12],
DraMA [27], DRAMDIG [40], TRRESPASS RE Tool [4], and AMDRE [8]. After
identifying the addressing functions with these tools, we ran our verifi-
cation method on these functions 10 times. We report the average percentage of
cases where the assumed banks are correct. We show a graphical representation
of all bits identified to belong to at least one DRAM bank addressing func-
tion. Therefore, it is possible to see how stable the functions were over multiple
measurements. Additionally, to function correctness, we evaluate the stability of
the tools as follows: Stable tools yield the same result upon every execution.
Mostly Stable tools yield the same result in > 70 % of runs and only 1 or 2 bits
difference in the other cases, or no result in at most 3 runs. Unstable tools yield
the same result in > 70 % of runs, but other runs vary. Completely Unstable
tools have varying results for all runs. Failed tools crashed or returned nothing.

Table 2: Experimentation results of multiple PoCs [27, 40, 4, 8, 12] on our DDR3
systems. 10 measurements were performed. AFn Mask shows a graphical repre-
sentation of all bits belonging to at least one DRAM bank addressing function.
The average percentage %avg is lower than %max when some runs failed and
some succeeded.

PoC AFn Mask %avg 0 %min Pomax PoC AFn Mask %avg 0 %min Pomax

AMDRE l 83.5% 274 1.4% 92.9% AMDRE . 90.1% 0.1 90.0% 90.3%
3 DRAMDIiIG l 92.7% 0.1 925% 92.8% Y DRAMDIic . 89.8% 0.8 87.3% 90.2%
R DramA A 43.9% 34.1 83% 92.7% & DrAMA T 423% 354 0.0% 90.1%

DARE 00% 0.0 0.0% 0.0% DARE 0.0% 0.0 00% 00%

TRRESPASS 0.0% 00 00% 0.0% TRRESPASS 0.0% 00 00% 0.0%

Table 3: Experimentation results ([27, 40, 4, 8, 12]) on our DDR4 systems (left)
and DDRJ5 systems (right), analogue to Table 3.

PoC AFn Mask %avg 0 %omin Yomax PoC AFn Mask Yavg 0 %omin Yomax
AMDRE | | 85.4% 0.1 852% 85.5% AMDRE 429% 429 0.0% 86.0%
~ DRAMDIc [| 84.8% 02 844% 851% -~ DRAMDIG 00% 00 00% 00%
> =T | S -/ 7
S Drama STaRs | 153% 156 00% 449% R DRAMA IffEE] 51% 18 16% 63%
DARE [| 76.8% 25.6 00% 85.5% DARE (Ml | 63% 00 63% 64%
TRRESPASS [| 841% 2.1 T796% 85.6% TRRESPASS | 1i38 54% 1.2 29% 61%
AMDRE | | 77.2% 02 76.9% 77.4% AMDRE Hi 87.0% 0.2 86.7% 87.3%
& DRAMDIG [| 42.3% 0.1 420% 425% gz DRAMDIG 00% 00 00% 00%
% Drama 6.7% 65 0.0% 213% 5 Drama iiad 4.0% 22 00% 55%
DARE 206% 194 00% 42.4% DARE |y | 46% 17 00% 54%
TRRespass | M 422% 0.1 42.0% 424% TRREspass | i il 54% 0.1 52% 55%
AMDRE [T 232% 130 00% 38.8% AMDRE 0.0% 00 00% 00%
% DRAMDIG 0.0% 00 00% 00% m DRAMDIG 00% 00 00% 00%
3% Drama : 13.9% 9.7 00% 231% 2 DraMa [PEE | 227% 06 21.8% 23.7%
DARE 14.4% 6.0 00% 21.6% DARE —_ = 1.2% 1.2 00% 26%
TRRESPASS 0.0% 00 00% 0.0% TRRESPASS 0.0% 00 00% 0.0%
AMDRE | | 62.3% 05 61.8% 63.4% AMDRE 00% 00 00% 00%
5 DRAMDIG 0.0% 00 00% 00% x DRAMDIG 00% 00 00% 00%
S Drama [EFEEL | 160% 58 73% 21.8% 3 Drama 206% 69 0.0% 23.6%
DARE - 185% 1.6 161% 20.5% DARE 189% 95 00% 23.7%
TRRESPASS 0.0% 00 0.0% 0.0% TRRESPASS 00% 00 00% 0.0%

DDR3. Table 2 summarizes our results on two DDR3 systems. DRAMDIG
consistently identified stable addressing functions with success rates around
92%. AMDRE produced mostly stable results but with high variance (1.4 %
to 92.9%). In contrast, DRAMA was completely unstable, ranging from 0% to
92.7%. DARE and TRRESPASS failed on both systems.

DDR4. As shown in Table 3, on S/01 and 5402, AMDRE, DRAMDIG, and
TRRESPASS returned stable functions, DARE reported mostly stable functions
and DRAMA reported completely unstable functions. DRAMA has a success rate
of 0% to 44.9%. The maximum success rate for AMDRE, DRAMDIG and
DARE is around 77 % to 85 % and around 42 % to 85 % for TRRESPASS. The
minimum success rate is approximately 85 % for AMDRE and DRAMDIg, it
is 79.6 % for TRRESPASS and 0% to 42 % for DARE.

100 %

—e— Measurements Expected

50 %

Success rate

| | | | | |] \
0% 5 10 15 20 25 30 35 40

Number of measurement n

Fig. 2: Success rate reported depending on the number of addressing functions
submitted. The measurement was done on S401 with 4 addressing functions.
For each number of addressing functions, 10 measurements were performed.

On 5403 and 5404, DRAMDIiG and TRRESPASS failed. The masks of DARE
are stable and mostly stable. AMDRE returns completely unstable and stable
results. The success rates are generally lower than for the other two systems.
DDRS5. Table 3 shows the results for our four DDR5 systems. No tool has sta-
ble results across all machines. DRAMDIG failed on all machines and AMDRE
and TRREsSPASS on 5503 and S504. AMDRE is only stable on one machine,
TRRESPASS is unstable on the two machines where it works. DRAMA was un-
stable or completely unstable across all machines. The success rates are generally
lower than for DDR4, with AMDRE reaching the highest success rates of ap-
proximately 87 % on two systems. DARE has stable and mostly stable results
with maximum success rates of 2.6 % to 23.7 %.

4.3 Verification of Single Addressing Functions

We verify the entire set of addressing functions in Section 4.2. However, with
that, we cannot make any statement about single functions. This section extends
the approach from Section 4.2 to verify single addressing functions within a set.

If a system has ng, correct DRAM bank addressing functions, the number
of banks is npanks = 2™=. If we remove one of these functions, the number of
banks addressable halves: 2"n~1 = % = Mbanks No addresses can be added to
half of the banks because they can not be addressed with the reduced number of
functions. This results in 50 % of the DRAM banks no longer being accessible via
addressing functions and reduces the success rate by 50 %, as shown in Figure 2.

In the range 0 < n < 10 we use all DRAM addressing functions 0x2040,
0x24000, 0x48000, and 0x90000. The average success rate is 92.08 %. For 10 <
n < 20, we remove 0x90000 and the average success rate halves to 46.61%. In
the 20 < n < 30 range, we remove 0x48000 resulting in an average success rate
of 23.09 %. Finally, for 30 < n < 40, the function 0x2040 is used, and the average
success rate is 11.35 %, with an expected success rate of 11.51 %.

We conclude that all the DRAM addressing functions used above are correct.
However, this approach has the disadvantage that the differences between using
or not using a function get lower the more functions were removed before. For
example, the expected difference for removing the first function is 46.04 %, which

Table 4: Evaluation of single addressing functions grouped by system. The value

of Yoexp is always 50 % of the measured initial success rate for the entire function

set. Manual manipulation to obtain wrong functions (see the v under Mod).
Function Mod. %meas %oexp Yoair Cor. Function Mod. %meas %oexp %aig Cor.

o 0x22000 X 47.6% 461% 15% o 0x23000 231% 107% 124% X
§ 0x44000 X 47.6% 461% 15% § 0x44000 X 109% 10.7% 02%
0x88000 X 47.8% 46.1% 1.7% 0x89000 v 226% 10.7% 11.9% X
0x110000 X 47.7% 461% 16% 0x110000 X 109% 107% 02%
0x2040 X 46.1% 46.6% 05% 0x2040 X 104% 104% 00%
S 0x24000 X 464% 466% 02% v I 0x25000 v 208% 104% 104% X
A 0x48000 X 46.4% 46.6% 02% /& 0x48000 X 10.5% 104% 01%
0x90000 X 46.3% 46.6% 03% 0x110000 v 22.6% 104% 122% X
0x6300 X 43.6% 433% 03% 0x6100 v 943% 3.11% 6.32% X
0x10000 X 43.6% 433% 03% 0x10000 X 3.07% 3.11% 0.04%
S 0x20000 X 438% 433% 05% v I 0x24000 v 919% 3.11% 6.08% X
B 0x42300 X 434% 433% 01% 9B 0x42300 X 3.08% 3.11% 003%
0x81100 X 435% 43.3% 02% 0x82100 v 9.36% 3.11% 6.25% X
0x108000 X 43.3% 43.3% 0.0% 0x108000 X 3.08% 3.11% 0.03%
o 80 %
2 60% |- =
% 40 % |- -
U% 20% |- n
0% | | | | | L

| i | |
650 700 750 800 80 900 950 1,000 1,050 1,100 1,150

Threshold between row hits and row conflicts

Fig. 3: Success rate of our verification approach depending on the threshold. The
graph shows average, minimum, and maximum values over 10 measurements.

decreases to 11.51 % for removing the third function. However, as DRAM bank
addressing functions are not ordered, we remove every function from the initial
set of all functions individually, comparing the new success rate to the initial
one. If a correct function is removed, the success rate is expected to halve.

We evaluate our verification on DDR3, DDR4, and DDRS5, each with the set
of addressing functions reverse-engineered in Section 4.2 that yields the high-
est percentage on the respective system. Then, we manually modify some of the
DRAM addressing functions. Afterward, we repeat the experiment with the mod-
ified function to verify that our approach can detect the modified, now wrong,
addressing functions. The results of this evaluation are shown in Table 4.

For §301, 5401, and S501, the submitted addressing functions were identified
to be correct, with a maximum difference of 0.76 % between the expected and
the measured values when no modifications were performed. Without any mod-
ified functions, all systems’ base success rate (2 x %exp) is approximately 90 %.
With two modified functions, the success rate drops to 21.34 % on S301. Both
incorrect functions were identified, with differences of 11.43 % and 11.80 %. The

4,000

™ 90 e
iy -
g 2,000
A 10 "

0 -'"...... 0 0

0 10 20 30
Bank 1 Bank 1

(a) Number of too fast row conflicts. (b) Number of too slow row hits.

Fig. 4: Heat maps of both errors: too fast row conflicts and too slow row hits. The
x-axis shows the group of the first address, the y-axis the second selected address.
Measurements on S40/4 (with threshold 495), averaged over 10 measurements.

correct function was identified with a difference of 0.71 %. On S401, two modified
addressing functions resulted in an overall success rate of 20.88 %. The incorrect
functions were identified, with differences of 10.39 % and 12.18 %. Both correct
functions were identified, with differences of 0.01 % and 0.08 %. The three mod-
ified addressing functions on $501 resulted in a drop in the overall success rate
of 6.22 %. The incorrect functions have differences of 6.32 %, 6.08 %, and 6.25 %.
In contrast, the three correct functions have differences of 0.04 %, 0.03 %, and
0.03%. Our approach identifies correct and incorrect DRAM bank addressing
functions in all cases within this experiment.

5 Rank Timing Analysis

To analyze the lower-than-expected success rate (see Section 4.2), we perform
multiple measurements and finally show that a second layer of addressing func-
tions is used to determine the rank of a physical address.

5.1 Rank Addressing Functions

We use the same timing notation introduced in Section 4.1 and find four timing
cases, C1, with t. > t7 and t, < tp, E1, with t. < t7 and t;, < tp, E2, with
te < tp and ty > tp, and E3, with t. > tp and t; > t7. When the addresses are
correctly grouped, and both addresses from the same group are not in the same
row, t. cannot be smaller than ¢ since a row hit (¢;) is faster than a row conflict
(t.). Depending on the addresses chosen, the case labeled E2 might occur even
when correct addressing functions are used. The probability of this happening
is discussed below. By default, 1% of the available addresses is grouped, which
is 10 MiB of 1GiB. If all selected addresses are contiguous, 10 MiB of memory
are distributed over npanks banks. In the case of 32 DRAM banks, this results
in % = 320KiB per DRAM bank. With the assumption that the addresses

10

completely populate contiguous rows with a row size of 8 KiB, the selected ad-
dresses populate % = 40 rows. So, the probability of one randomly selected
address being in one chosen row is % = 2.5%. Following this, the probability
of two randomly selected addresses being in the same DRAM bank is 2.5 %.
Therefore, case E2 is doubtful when correct DRAM bank addressing functions
are used, since two randomly selected addresses from the same DRAM bank
would have to be in the same row, which happens at a probability of 2.5% in
the worst case. Under the assumption that the tested DRAM bank addressing

functions are correct, the cases E1, C1, and E3 are statistically relevant.

In contrast to the approach described in Section 4.1, the threshold is manu-
ally specified and not measured for this experiment. The threshold impacts the
success rate, as shown in Figure 3. The statistically relevant cases E1, C1, and
E3 depend on the selected threshold as shown below:

E1: Since both timings (¢. and t;) are lower than the threshold, row conflicts
are misclassified as row hits. The threshold is selected too high (for ¢t > 875
in the graph shown in Figure 3).

C1: Since row conflicts (t.) are slower and row hits (¢;) are faster than the
threshold, both cases are classified correctly. The threshold is set correctly
(for 875 > t7 > 795 in the graph shown in Figure 3).

E3: Since both timings (¢. and ¢;) are higher than the threshold, hits are mis-
classified as conflicts. The threshold is too low (for t7 < 795 in Figure 3).

Note that the three cases overlap and merge, so the submitted threshold
values describe a range and not a specific value. In these measurements, two
types of single errors can occur: (el) a row hit is too slow and misclassified as
conflict; and (e2) a row conflict is too fast and misclassified as hit.

Figure 4 shows heat maps for both errors. Row conflicts are expected when
comparing addresses from the same DRAM bank, so there are npanys different
cases (one for each DRAM bank), as shown in Figure 4a. Row hits are expected
between addresses from one DRAM bank and addresses from any other DRAM
bank, as shown in Figure 4b. The heat map shows no values on the diagonal
since addresses from the same bank are not expected to be row hits.

As shown in Figure 4b, there is a pattern in the error number depending
on the addresses of which DRAM banks are compared to each other. When
comparing an address from bank 0 to another address, the number of errors is
lower for the following banks: (2, 5, 7, 9, 11, 12, 14, 16, 18, 21, 23, 25, 27, 28,
30). Similarly, comparing an address from bank 1 with another address has fewer
errors for the following banks: (3, 4, 6, 8, 10, 13, 15, 17, 19, 20, 22, 24, 26, 29, 31).
So, there are two groups of DRAM banks for which the error rate is lower when
addresses are selected from banks within the same group. At the same time, the
error rate is higher when selecting two addresses from banks in different groups.

This grouping can be described by a grouping function taking bank number
(0-31) as input and returning an output of one bit equivalent to the number of
the groups. The function can be represented by a bitmask that selects bits of the
input and applies a bitwise XOR to them. When bank numbers are represented

11

—— w/ Rank Functions —— w/o Rank Functions
80% F—1 T I T T T T —
60 %
40 %
20%
0%

Success rate

‘ i i i i i i
700 750 800 850 900 950 1,000 1,050

Threshold between row hits and row conflicts

Fig.5: Average, minimum and maximum success rate (10 measurements) of our
verification approach with and without using rank addressing functions. The
graph without rank addressing functions is the same one shown in Figure 3.

in binary, the addressing function 0xd (0b01101) can be applied similarly to the
DRAM bank addressing functions to get a resulting bit determining the group.

The error rate is lower when two addresses from different banks within the
same bank group are selected, so we restrict the measurements only to those
cases. We compare the success rates with or without applying the additional
DRAM addressing function. The result of this experiment is shown in Figure 5.

When additional rank addressing functions are used, the success rate is higher
in the 700 < tp < 780 range. For ¢ < 700, the success rate is nearly 0 for both
graphs. When ¢t > 780, the success rates for both graphs are similar.

The range 700 < tp < 780 has a similar upper border as tr < 795, as
discussed in case E3, in which both timings (t. and t;) are higher than the
threshold. So, the number of row hits misclassified as row conflict is lower when
rank addressing functions are used.

Some row hits are faster than others, as shown in Figure 4b. However, in
contrast to the patterns in the heatmaps that occurred in the range 920 < tp <
980 as well, the differences in the success rate graph are only relevant in the
range of row hits being misclassified as row conflicts.

The memory controller issues Rank Select commands every time the rank
changes, so it is assumed that accessing two addresses from the same rank that
are on different banks (e. g., row hit) is faster than accessing two addresses from
different ranks (e.g., row hit). This effect occurs only on systems with multiple
ranks (we tested systems with 1 and 2), as further evaluated in Section 5.2.
Therefore, we conclude that the effect is related to the DRAM rank.

5.2 Experimental Evaluation

We perform the steps described in Section 5.1 for experimental evaluation. If a
DRAM rank addressing function is derived, it is submitted to the verification
tool. The maximum distance between the success rates with and without using
the rank addressing function is measured. The results are shown in Table 5.
On both DDR3 systems (5301 and S302), it was not possible to see any
patterns in the number of row hits that were too slow, similar to the one shown

12

Table 5: Success rate at the threshold (¢r) with a maximum difference with
and without DRAM rank addressing functions (RF) yielding the best results in
Section 4.2 (10 measurement average). No rank functions found on other systems.

System RF tr % w RF % w/o RF ARrp
5402 2 540 66.16 % 38.77 % 27.40 %
5404 13 730 38.54% 20.18% 18.36 %
5501 6,8,10 255 77.32% 42.86 % 34.46 %
5502 6,8,10 230 55.63 % 19.52 % 36.11%

in Figure 4b. Therefore, we could not apply a rank addressing function and
skipped the evaluation of the rank addressing function.

For the DDR4 systems, patterns occurred only on systems with two ranks
(5402 and S404), there were no recognizable patterns for the systems with one
rank (5401 and S403). Therefore, we evaluate rank addressing functions only on
5402 and S404. On S402, we identify the rank addressing function 2. We observe
a maximum difference of 27.40%. On S404, the rank addressing function is 13.
The same data as in Section 5.1 was used for the evaluation. The maximum
distance of 18.36 % was reached at a threshold of 730.

As the DRAM addressing functions on S503 and S50/ reached very low
success rates in our experiments (see Section 4.2), these systems were excluded
from the evaluation of rank addressing functions. In contrast to the DDR4 sys-
tems discussed before, $501 and $502 had correct DRAM addressing functions.
Recognizing a pattern in the number of row hits that were too slow was also
possible. From this pattern, we derived the rank addressing functions 6,8,10 for
both systems. On 5501, the maximum difference between using and not using
the rank addressing functions is 34.46 %. For $502 it is 36.11 %.

The row-conflict side-channel can be used to detect rank functions equivalent
to bank functions, which is the case when only a single bit is set in the rank
function mask (e.g., 2, 8). However, most rank function masks (e.g., 13, 6, 10)
have multiple bits set, e.g., combine more than one bank addressing function.
Thereby, the row-conflict side-channel itself is not sufficient to detect them.

6 Row-Conflict Covert Channel on DDR5

This section presents the first row-conflict covert channel on DDR5, including
cross-VM, with transmission speeds up to 2.23 Mbit/s. The sender and receiver
have no shared memory and encode data into same-bank row conflicts, similar
to previous covert channel designs: A low timing (absence of a row conflict)
corresponds to a ‘1’ and a high timing (row conflict) corresponds to a ‘0’.

We use a time-sliced protocol, synchronized via rdtsc and a 75 %-majority
vote to decide whether the accesses within a time slice were mainly row conflicts
or not, i.e., a ‘0’-bit or not. For cross-VM, the Time Stamp Counter (TSC)
can have different values but run at the same speed in each VM. Hence, we
synchronize by transmitting a predefined sequence at a predefined rate. The

13

@ Error Rate —— True Capacity

= T T T T T T

=)
.;. 2 140 =,
> g
z &
Q

8 1 -120
2 2
Q —~
g (O S — i i i i i i i i 10 =
& 0 2 4 6 8 10 12 14 16 18

Raw Capacity [Mbit/s]

Fig. 6: Raw and true capacity of our covert channel on $502 with 99 % confidence
intervals.

Table 6: True capacity of the covert channel on multiple systems where it worked.

System Error Rate Raw Capacity True Capacity System Error Rate Raw Capacity True Capacity

5301 39.22% 0.27 Mbit/s 0.01 Mbit/s 5402 24.01 % 3.21 Mbit/s 0.66 Mbit/s
5302 21.74 % 9.14 Mbit/s 2.23 Mbit/s S501 25.88 % 7.39 Mbit/s 1.29 Mbit /s
5401 43.66 % 3.72 Mbit/s 0.16 Mbit/s S502 28.30 % 9.89 Mbit/s 1.39 Mbit /s

receiver reads the sequence and can adjust its offset to the timestamp counter.
After 8 bits were received, the receiver increases the offset by % of the specified
transmission window.

Suppose the receiver encounters a byte that is either 10101010, i.e., Oxaa,
or 01010101, i.e., 0x55 (one bit shifted); the current offset is stored for the first
valid sequence. Likewise, the offset of the first following sequence that is neither
Oxaa nor 0x55 is stored for the following invalid sequence. Afterward, the average
of both offset values is used as offset during the rest of the transmission.

Next, it is required to synchronize the border of bytes. This is done by trans-

mitting two bytes of 0x00. Because the sequence 10101010 ends with a 0, the
receiver should receive 1 + 8 x 2 = 17 zeroes in a row. After receiving 17 zeroes
in a row, the receiver starts to receive a new byte. Finally, the byte Oxaa is sent
again to verify that the synchronization was successful.
Experimental Evaluation. We transmit 6 000 randomly generated bytes.
The raw capacity, i. e., the number of bits sent divided by the transmission time,
and the error rate, i.e., bit-edit distance divided by the number of bits, is in
Figure 6.° We tested 25 gradually decreasing window sizes per system. The true
capacity varies slightly with the error rate.

We perform experiments on multiple test systems and calculate the true
capacity. Table 6 shows the raw capacity, the error rate, and the true capacity
we reach. The covert channel did not work on the systems with AMD CPUs
(5408, S404, 5508, S50/). The reason might be that Jattke et al. [12] found that
AMD requires offsets for specific physical addresses, which was not considered.

5 Shannon’s noisy-channel coding theorem yields the true capacity T as T = r - 1+
((1—p) - logy(1 = p) + p - log,(p)))-

14

On the Intel systems with DDR3, the true capacity differs significantly. This
can be explained by the error rate on S301, which is significantly higher than on
5302, even though the raw capacity is significantly lower. The error rate on S301
was even higher at higher capacities. Therefore, the true capacity of 0.01 Mbit/s
was reached at a raw capacity of 0.27 Mibit/s. In contrast, the true capacity on
S$302 is 2.23 Mbit/s at a raw capacity of 9.14 Mbit/s.

On 5401, the error rate of 43.66 % is significantly higher than 24.01 % on
S402. Even though a raw capacity of 3.72 Mbit/s and 3.21 Mbit/s is close, the
big difference in the error rates leads to a significantly different true capacity.
Therefore, the true capacity is 0.16 Mbit/s on S401 and 0.66 Mbit/s on S402.

In contrast to the previous experiments, the true capacity of both DDR5
systems is similar. On 5501, the true capacity is 1.29 Mbit/s at a raw capac-
ity of 7.39Mbit/s with an error rate of 25.88%. On 5502, the true capacity is
1.39 Mbit/s at a raw capacity of 9.89 Mbit/s with an error rate of 28.30 %.

7 Website Fingerprinting Attack

We utilize the DRAMA side channel to mount a website fingerprinting attack.
We measure memory access patterns while accessing websites using Firefox. We
hypothesize that the browser’s memory access patterns depend on the website
rendered at that moment. For evaluation, we train a machine learning (ML)
model to classify the websites based on measured memory accesses. We verify
our fingerprinting approach by classifying 100 websites with an F; score of 84 %
on DDR4 and 74 % on DDR5.

Fingerprinting Procedure. First, we spawn a process that measures the
access times to addresses on different system memory banks. At the same time,
we access a website with Firefox and wait 8s for the website to be rendered.
We then stop Firefox and the measuring process, aggregate the data to reduce
data size, and prepare them for ML model training or evaluation. Afterward,
we use the aggregated data to train our ML model. Finally, we reaccessed the
websites, measured and aggregated memory access data, and used our ML model
to predict which website we had accessed.

Access Time Measurements. We take DRAM addressing functions, allo-
cate two 2 MiB hugepages on the system. Then, we resolve the mapping of the
virtual addresses to physical addresses using /proc/self/pagemap. Pagemap is
unnecessary for an actual attack because Heckel et al. [8] showed that we can
dynamically group addresses based on access times. However, for the purpose
of demonstration, we used it to reduce the initialization time and increase the
stability for the experimental evaluation. We then start n threads for measuring.
Each thread measures the memory access times of a specific DRAM bank. If the
measured access time was bigger than the threshold between row hit and row
conflict, the access time and timestamp are stored in a buffer. We measure the
loading of each website for approximately 8s. The number of threads n is set to
Nproc — 2, Where npoc is the number of logical CPU cores in the system. Hence,
there are still two CPU cores left for Firefox and system.

15

Aggregation of Data. Next, we take the files created in the previous step.
We specify a window size and aggregate the number of row conflicts in that
window. We then store the data in a three-dimensional array. We use a window
size of 100 ps. The first dimension contains the number of row conflicts within
the specified window. The second dimension contains the banks, e. g., one first-
dimension list for each bank measured. The third dimension contains multiple
measurements; in our case, 100 accesses the same website.

Description of the ML Model. Our ML model consists of 9 convolutional
layers in groups of three with max pooling and dropout layers in between. The
output of the convolutional layers is then flattened, and the final prediction is
made after three dense layers. The input of a single website to the model is
a 3 dimensional spectrogram with the dimensions time, frequency, and DRAM
bank.

Experimental Evaluation. For experimental evaluation, we access 100 web-
sites 100 times each. Afterward, we use 80 % of the measurements to train our
ML model and 20 % to test our model. On a test system with DDR5 (5502),
we reach an overall Fy score of 74% and plot the predictions of our model in
Figure 7b. On a test system with DDR4 (S401), we reach an overall Fj score
of 84 % and plot the predictions of our model in Figure 7a. S502 has 24 logical
cores (22 threads for measurement) and S401 has 20 logical cores (18 threads
for measurement). Because each thread measures a single DRAM bank, we can
measure 16 of 16 banks on 5401, so we measure accesses of Firefox to all DRAM
banks. On $502, we can only measure 22 of 64 banks, so 34.38 % of the DRAM
accesses performed by Firefox (assuming equal distribution of accesses over all
banks). We hypothesize that this is the reason for the lower accuracy on S502.

8 Conclusion

In this paper, we introduced a novel approach to reliably verifying DRAM ad-
dressing functions and function components from software. A first systematic
analysis of 5 DRAM function reverse-engineering tools on 10 different system
configurations showed significant variance in the success rate of these tools, from
0% to 92.9%. We discovered the previously unknown rank selection side chan-
nel and reverse engineer its function on two DDR4 and two DDRS5 systems.
These results enable novel DDR5 row-conflict side-channel attacks, which we
demonstrated in two scenarios: a covert channel with 1.39 Mbit/s, and a website
fingerprinting attack with an F; score of 84 % on DDR4 and 74 % on DDR5. We
conclude that as reverse-engineering of DRAM address functions remains rele-
vant, our new verification methodology provides a cheap and reliable alternative
to verification using expensive physical measurements.

Acknowledgments. This work was funded by the Deutsche Forschungsgemeinschaft
under grant number 503876675 and the Austrian Science Fund under grant number
10.55776/16054, as well as the European Union under grant number ROF-SG20-3066-
3-2-2.

16

This preprint has not undergone any post-submission improvements or corrections.

The version of Record of this contribution will be published in the proceedings Com-
puter Security — ESORICS 2025

References

1]
2]

AMD. BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 16h
Models 00h-0OFh Processors. 2015. URL.

Alessandro Barenghi, Luca Breveglieri, Niccolo Izzo, and Gerardo Pelosi.
“Software-only reverse engineering of physical DRAM mappings for rowham-
mer attacks”. In: International Verification and Security Workshop (IVSW).
2018.

Jack Cook, Jules Drean, Jonathan Behrens, and Mengjia Yan. “There’s
always a bigger fish: a clarifying analysis of a machine-learning-assisted
side-channel attack”. In: ISCA. 2022.

Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen,
Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. “TR-
Respass: Exploiting the Many Sides of Target Row Refresh”. In: SéP.
2020.

Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas Juffin-
ger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom. “Another Flip
in the Wall of Rowhammer Defenses”. In: S&P. 2018.

Daniel Gruss, Clémentine Maurice, and Stefan Mangard. “Rowhammer.js:
A Remote Software-Induced Fault Attack in JavaScript”. In: DIMVA.
2016.

Youngkwang Han and John Kim. “A Novel Covert Channel Attack Using
Memory Encryption Engine Cache”. In: DAC. 2019.

Martin Heckel and Florian Adamsky. “Reverse-Engineering Bank Address-
ing Functions on AMD CPUSs”. In: DRAMSec Workshop. 2023.

Christian Helm, Soramichi Akiyama, and Kenjiro Taura. “Reliable Reverse
Engineering of Intel DRAM Addressing Using Performance Counters”. In:
Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS). IEEE. 2020.

Suman Jana and Vitaly Shmatikov. “Memento: Learning Secrets from Pro-
cess Footprints”. In: S&P. 2012.

Patrick Jattke, Victor van der Veen, Pietro Frigo, Stijn Gunter, and Kaveh
Razavi. “BLACKSMITH: Rowhammering in the Frequency Domain”. In:
SEP. 2021.

Patrick Jattke, Max Wipfli, Flavien Solt, Michele Marazzi, Matej Bolcskei,
and Kaveh Razavi. “ZenHammer: Rowhammer Attacks on AMD Zen-
based Platforms”. In: USENIX Security. 2024.

Jonas Juffinger, Fabian Rauscher, Giuseppe La Manna, and Daniel Gruss.
“Secret Spilling Drive: Leaking User Behavior through SSD Contention”.
In: NDSS. 2025.

17

https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/programmer-references/48751_16h_bkdg.pdf

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. “Flipping Bits in
Memory Without Accessing Them: An Experimental Study of DRAM Dis-
turbance Errors”. In: ISCA. 2014.

Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu Kim, Moritz Lipp,
Nicolas Boichat, Eric Shiu, Mattias Nissler, and Daniel Gruss. “Half-Double:
Hammering From the Next Row Over”. In: USENIX Security. 2022.
Ajaykumar Kushwaha, Ajay Jain, Mahendra Patel, and Biswabandan Panda.
“Golmaal: Thanks to the Secure TimeCache for a Faster DRAM Covert
Channel”. In: DRAMSec. 2022.

Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. “RAM-
Bleed: Reading Bits in Memory Without Accessing Them”. In: S€P. 2020.
Butler W Lampson. “A note on the confinement problem”. In: Communi-
cations of the ACM (1973).

Lukas Maar, Jonas Juffinger, Thomas Steinbauer, Daniel Gruss, and Ste-
fan Mangard. “KernelSnitch: Side-Channel Attacks on Kernel Data Struc-
tures”. In: NDSS. 2025.

Michele Marazzi and Kaveh Razavi. “RISC-H: Rowhammer Attacks on
RISC-V”. In: DRAMSec Workshop. 2024.

Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann, Olivier
Heen, and Aurélien Francillon. “Reverse Engineering Intel Complex Ad-
dressing Using Performance Counters”. In: RAID. 2015.

Clémentine Maurice, Christoph Neumann, Olivier Heen, and Aurélien Fran-
cillon. “C5: Cross-Cores Cache Covert Channel”. In: DIMVA. 2015.
Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner, Daniel
Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay Romer. “Hello from
the Other Side: SSH over Robust Cache Covert Channels in the Cloud”.
In: NDSS. 2017.

Thomas Moscibroda and Onur Mutlu. Memory Performance Attacks: De-
nial of Memory Service in Multi-Core Systems. Tech. rep. Feb. 2007.

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut
Kandemir, and Thomas Moscibroda. “Reducing Memory Interference in
Multi-Core Systems via Application-Aware Memory Channel Partition-
ing”. In: MICRO. 2011. por: 10.1145/2155620.2155664.

Keisuke Okamura and Yoshihiro Oyama. “Load-Based Covert Channels
between Xen Virtual Machines”. In: Symposium on Applied Computing
(SAC). 2010.

Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Ste-
fan Mangard. “DRAMA: Exploiting DRAM Addressing for Cross-CPU
Attacks”. In: USENIX Security. 2016.

Antoon Purnal and Ingrid Verbauwhede. “Advanced profiling for proba-
bilistic Prime+Probe attacks and covert channels in ScatterCache”. In:
arXiv:1908.08383 (2019).

18

https://doi.org/10.1145/2155620.2155664

Yi Qin and Chuan Yue. “Website Fingerprinting by Power Estimation
Based Side-Channel Attacks on Android 7”. In: TrustCom/BigDataSE.
2018.

Fabian Rauscher, Andreas Kogler, Jonas Juffinger, and Daniel Gruss. “Idle-
Leak: Exploiting Idle State Side Effects for Information Leakage”. In:
NDSS. 2024.

Gururaj Saileshwar, Christopher W Fletcher, and Moinuddin Qureshi.
“Streamline: a fast, flushless cache covert-channel attack by enabling asyn-
chronous collusion”. In: ASPLOS. 2021.

Mark Seaborn. Fzploiting the DRAM rowhammer bug to gain kernel priv-
ileges. 2015. URL.

Mark Seaborn. How physical addresses map to rows and banks in DRAM.
2015. URL.

Mark Seaborn and Thomas Dullien. “Exploiting the DRAM Rowhammer
bug to gain kernel privileges”. In: Black Hat USA. 2015.

Benjamin Semal, Konstantinos Markantonakis, Raja Naeem Akram, and
Jan Kalbantner. “Leaky Controller: Cross-Vm Memory Controller Covert
Channel On Multi-Core Systems”. In: ICT Systems Security and Privacy
Protection (SEC). 2020.

Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Pra-
teek Mittal, Yossi Oren, and Yuval Yarom. “Robust Website Fingerprinting
Through The Cache Occupancy Channel”. In: USENIX Security. 2019.
Raphael Spreitzer, Simone Griesmayr, Thomas Korak, and Stefan Man-
gard. “Exploiting data-usage statistics for website fingerprinting attacks
on Android”. In: ACM Conference on Security & Privacy in Wireless and
Mobile Networks. 2016.

Kshitij Sudan, Niladrish Chatterjee, David Nellans, Manu Awasthi, Ra-
jeev Balasubramonian, and Al Davis. “Micro-Pages: Increasing DRAM
Efficiency with Locality-Aware Data Placement”. In: ASPLOS. 2010. DOT:
10.1145/1735970.1736045.

Victor van der Veen and Ben Gras. “DramaQueen: Revisiting Side Chan-
nels in DRAM”. In: DRAMSec. 2023.

Minghua Wang, Zhi Zhang, Yueqgiang Cheng, and Surya Nepal. “Dramdig:
A Knowledge-assisted Tool to UncoverDRAM Address Mapping”. In: De-
sign Automation Conference (DAC). 2020.

Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng
Wang, Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. “Leaky
Cauldron on the Dark Land: Understanding Memory Side-Channel Haz-
ards in SGX”. In: CCS. 2017.

Zhenghong Wang and Ruby B Lee. “Covert and Side Channels due to
Processor Architecture”. In: ACSAC. 2006.

Zhenyu Wu, Zhang Xu, and Haining Wang. “Whispers in the Hyper-space:
High-bandwidth and Reliable Covert Channel Attacks inside the Cloud”.
In: ACM Transactions on Networking (2014).

19

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://lackingrhoticity.blogspot.com/2015/05/how-physical-addresses-map-to-rows-and-banks.html
https://doi.org/10.1145/1735970.1736045

[44] Zhenyu Wu, Zhang Xu, and Haining Wang. “Whispers in the Hyper-space:
High-speed Covert Channel Attacks in the Cloud”. In: USENIX Security.

2012.

[45] Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh Joshi, Matti
Hiltunen, and Richard Schlichting. “An exploration of L2 cache covert
channels in virtualized environments”. In: CCSW. 2011.

[46] Yuval Yarom and Katrina Falkner. “Flush+Reload: a High Resolution,
Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security. 2014.

[47] Ruilyi Zhang, Tachyun Kim, Daniel Weber, and Michael Schwarz. “(M)WAIT
for It: Bridging the Gap between Microarchitectural and Architectural Side
Channels”. In: USENIX Security. 2023.

[48] Zhi Zhang, Wei He, Yuegiang Cheng, Wenhao Wang, Yansong Gao, Minghua
Wang, Kang Li, Surya Nepal, and Yang Xiang. “BitMine: An end-to-end
tool for detecting rowhammer vulnerability”. In: TIFS 16 (2021), pp. 5167

5181.

A Confusion Matrix Website Fingerprinting

100

80

Z g0

40

z
=
=
5
&

20

(a) Website confusion matrix on DDR4
(5401), with Fy score 86.7 %.

20

40 60
Actual Website

80

100

100

80

40

20

0

100 .-.-l.- 100

80 / 80
5

60

.

Predicted Website
s

40

AN

20 40 60 80 100
Actual Website

(b) Website confusion matrix on DDR5
on S502, with Fy score 74.0 %.

Fig. 7: Confusion matrices. The actual website is shown on the x axis, the website
predicted by the model is shown on the y axis.

20

	Verifying DRAM Addressing in Software

