
Flipper: Rowhammer on Steroids

Martin Heckel1,2[0009−0006−9739−0587] and
Florian Adamsky1[0009−0002−6642−6904]

1 Hof University of Applied Sciences, Hof, Germany
2 Graz University of Technology, Graz, Austria

Abstract. The density of memory cells in modern DRAM is so high
that frequently accessing a memory row can flip bits in nearby rows.
That effect is called Rowhammer, and an attacker can exploit this phe-
nomenon to flip bits by rapidly accessing the contents of nearby memory
rows. In recent years, researchers have developed sophisticated exploits
based on this vulnerability, which enable privilege escalation on desktop
computers, mobile devices, and even cloud systems without requiring
any software vulnerability. However, rows are not equally vulnerable to
Rowhammer. Therefore, an attacker has to massage the memory, for in-
stance, with Page Table Entry (PTE) spraying, to increase the chance
of successful exploitation. More bit flips mean the attacks become easier
and faster to conduct.
In this paper, we present Flipper, a Rowhammer amplification attack
against DDR3, consisting of two components: cmpIST exploits the cmpsb
and repe x86 instructions to get DRAM access with higher frequency.
cmpPAR exploits the effect of hammering in multiple threads, which
increases the number of bit flips found in a given time, as shown in pre-
vious work. As a result, we can increase the number of bit flips by a
factor of 830 on the measured devices, even on systems featuring miti-
gation techniques, without using administrative privileges. We evaluate
our technique on six DDR3 DIMMs. Although DDR3 memory has been
superseded by DDR4 and DDR5 memory technologies, it is still widely
used in devices that do not require frequent replacement, such as projec-
tors, smart displays, servers, embedded devices, routers, and printers.

1 Introduction

DRAM stores data in memory cells consisting of capacitors and transistors.
These DRAM cells are organized in arrays of rows and columns. A high density
of memory cells is required to meet the market demands for storage capacity.
Due to the high density, rapidly accessing a memory cell can affect spatially
nearby memory cells. That means rapidly reading the content of memory rows
can cause bit flips in adjacent memory rows. This vulnerability is known as
Rowhammer [21].

Initially, the problem behind Rowhammer was known as a side-effect with
little to no security implications [33]. In recent years, however, researchers de-
veloped sophisticated exploits based on Rowhammer. These exploits achieve, for

instance, privilege escalation on desktop computers [34, 5, 6, 4, 14, 31, 25, 19,
15], mobile devices [38, 41, 4, 24, 22], and even on cloud systems [30, 3, 40,
37], all without a software vulnerability. All these exploits have something in
common: the more bit flips are found, the easier and faster the exploits can be
conducted.

One technique to amplify Rowhammer attacks is multi-thread hammering,
in which multiple threads hammer different memory locations. Previous works
used multi-thread hammering with mixed results. Some works [23, 13, 7] show
that multi-thread hammering increases the number of bit flips. In contrast, Qiao
and Seaborn [28] show that multi-thread hammering was much less effective
than to single-threaded hammering, at least for DDR4 DIMMs with Target Row
Refresh (TRR).

Another technique that Kang et al. [19] introduced is called bank-level par-
allelism. When a program accesses memory locations in different banks, the
memory controller parallelizes these accesses, even when accessed from a single-
threaded program. They show that bank-level parallelism is quite effective for
Rowhammer on DDR4 and increases the number of bit flips. However, their
measurements show that it is not effective against DDR3.

Even though DDR3 memory is superseded by newer DDR4 and DDR5 mem-
ory technologies, it is still a relevant attack vector. Globally, a share of cloud
systems still use DDR3, and a considerable number of consumer and office sys-
tems still use DDR3 [11]. An analysis at our institution confirmed this on a local
scale as well, as we found many devices in use that still had DDR3 memory, e. g.,
projectors, smart screens, embedded devices, routers, and printers.

In this work, we show an effective amplification attack against DDR3. We
combine multi-threaded hammering with bank-level parallelism and show x86
instructions that can be used to increase the memory pressure. Thereby, we get
an increase in the number of bit flips found in a given time by a factor of 830.
Overall our paper makes the following contributions:

1. We introduce cmpIST , a Rowhammer amplification attack on DDR3 DRAM
that exploits the x86 cmpsb and repe instructions.

2. With cmpPAR, we reproduce the results of previous work [23, 13, 7] and
verify that the hammering process can be parallelized.

3. We perform a systematic evaluation of both primitives, separately and in
combination, and show that the number of bit flips on DDR3 systems can
be increased by a factor of 830 on our systems, even on systems featuring
the double refresh rate mitigation.

4. We publish Flipper, the tool used for evaluation3.

Outline. Section 2 provides background information. In Section 3, we intro-
duce two novel amplification attacks. Section 4 provides an experimental evalu-
ation of both attacks. We discuss the security impact in Section 5. Section 6 lists
possible countermeasures to mitigate the amplification effects. Related work is
discussed in Section 7. We conclude in Section 8.

3 https://github.com/iisys-sns/Flipper

2

https://github.com/iisys-sns/Flipper

2 Background

This section briefly overviews the memory architecture and describes how Rowham-
mer works.

2.1 Memory Architecture

DRAM cells consist of capacitors and transistors organized in columns and rows,
referred to as a DRAM array. The DRAM array, sense amplifiers, and the row
buffer, containing the last row that was accessed, is called a bank. Multiple banks
are placed across multiple chips, and multiple chips are organized in ranks. A
DIMM consists of one or multiple of these ranks. Memory systems can have
multiple buses that connect the CPU and the DIMMs. These buses are called
channels.

When data from memory is accessed, the entire row is loaded into the row
buffer. However, this operation destroys the original row’s content in the DRAM
array. Thus, the data has to be restored from the row buffer back into the row
located in the DRAM array.

Additionally, the capacitors lose charge over time. Therefore, they must be
refreshed regularly. The standards for DDR3 [16] and DDR4 [17] specify a refresh
interval of 64ms, while the standard for DDR5 [18] specifies a refresh interval of
32ms for each DRAM cell.

2.2 Rowhammer

When two different rows in the same bank are frequently accessed, this results in
multiple accesses to the actual DRAM array, involving the loading and restoring
of the rows. Due to these accesses, charge leakage can occur in other physically
adjacent rows—a phenomenon known as Rowhammer. An attacker can exploit
this side effect to induce bit flips in memory. The accessed rows are referred to
as aggressor rows, while the rows prone to bit flips are called victim rows.

Bit flips can only occur between two refresh operations of the rows because
the cells’ capacitors are restored during the refresh process. One mitigation tech-
nique for Rowhammer is to double the refresh rate, ensuring that a cell is re-
freshed every 32ms instead of 64ms [21]. Not all memory regions exhibit the
same vulnerability to Rowhammer; consequently, the number of bit flips ob-
served within a given period varies depending on the scanned memory region.
Furthermore, DIMMs are not uniformly vulnerable to Rowhammer, even when
they are the same model.

To exploit Rowhammer effectively, an attacker has to reverse-engineer the
mapping process from virtual memory addresses to spatial memory locations,
which is typically handled by the memory management unit (MMU) and the
memory controller [27]. For modern CPUs, the mapping functions between phys-
ical addresses and spatial memory locations remain unpublished. Because the
memory controller translates physical addresses to memory locations, an at-
tacker must ascertain the physical addresses mapped to the virtual addresses

3

used by processes. Alternatively, mechanisms that ensure proper alignment of
virtual memory addresses, such as Transparent HugePage (THP), can be uti-
lized. When the physical address (or a portion of it) is known, DRAM addressing
functions can be utilized to determine the spatial location of the physical address.
Although these functions are not publicly documented, several methodologies
exist to reverse-engineer them [27, 39, 9, 4, 8, 15].

3 Rowhammer Amplification Attacks

In this Section, we introduce a novel Rowhammer amplification attack which we
call Flipper, that increases the number of found bit flips on mitigated systems.
Our amplification attack consists of two parts: cmpIST and cmpPAR.

3.1 Terminology

The Rowhammer amplification primitive based on specific x86 instruction as
described in Section 3.2 is called cmpIST . Our implementation of this approach,
a standalone binary, is called MemPressureGen.

The Rowhammer amplification primitive based on parallel execution of Rowham-
mer on multiple banks as described in Section 3.3 is called cmpPAR. Our im-
plementation of this approach, a Rowhammer tool that includes features for
addressing function reverse-engineering and supports multi-threaded execution
of Rowhammer, is called HammerTool.

The combination of both, e. g., running HammerTool in one process and
MemPressureGen in another process at the same time, is called Flipper.
For experimental evaluation, we use RowhammerJS, a Rowhammer tool from
Gruss et al. [5] in addition to our own implementation HammerTool.

3.2 cmpIST : Exploiting the cmpsb and repe Instructions

The fundamental discovery for cmpIST is, that the function memcmp(...), shown
in Listing 1.1 is using assembly instructions to optimize the comparison. The
implementation uses the x86 cmpsb (compare byte strings) instruction in com-
bination with the repe instruction, which repeats the cmpsb instruction as long
as the ECX register is not zero and the ZF flag is set [12].

Both instructions are not new and were already available on the 8086 CPU [10].
In comparison, the ARM implementation of memcmp increases two pointers as
long as the bytes to be compared are equal. As stated by Shirriff [35], these x86
instructions are faster than the implementation in assembly code. A quick bench-
mark4 between the two implementations reveals that the x86 implementation is
around 2.65 times as fast as the ARM implementation.

Our implementation of cmpIST , MemPressureGen, allocates 1 024MiB of
memory and initializes all pages in the allocated memory area with the same

4 We measured the time to compare 1 000 000 pages of memory with identical content.

4

32 int memcmp(const void *s1 , const void *s2, size_t len)
33 {
34 bool diff;
35 asm("repe; cmpsb" CC_SET(nz)
36 : CC_OUT(nz) (diff), "+D" (s1), "+S" (s2), "+c" (len));
37 return diff;
38 }

Listing 1.1: Source code of the function memcmp from the Linux Kernel v6.13-rc5
located in arch/x86/boot/string.c.

random data. Thereby, identical data is compared and the cmpsb instruction
keeps running. MemPressureGen compares every page with the first one and
repeats this procedure in a loop until the process is terminated.

To amplify the Rowhammer attack, we run the native double-sidedRowham-
merJS exploit published by Gruss et al. [5] and start MemPressureGen as
new process in parallel. With this approach, the number of bit flips found in a
given time can be increased significantly, as we show in Section 4.

3.3 cmpPAR: Parallel Hammering

Accessing data in DRAM can be parallelised, provided that the data is stored in
different DRAM banks [20]. Previous work shows that parallel hammering can
have positive [23, 13, 7, 19] and negative [28] impacts on the number of bit flips
occurring.

This is why we implemented a multithreading mode in our Rowhammer
proof-of-concept (PoC) called HammerTool. HammerTool is implemented in
a way that each thread hammers a single DRAM bank. Therefore, each thread
gets a list of all items that should be hammered for a single bank, where each
item contains a list of aggressors that should be hammered and a list of victims
that should be checked for bit flips after the aggressors were accessed. After the
entire list is processed, the thread gets another list with all items that should
be hammered for another bank. It is possible to manually specify the number of
threads. By default, it uses n threads = min(n logical cpus,n memory banks)
threads on the victim’s system. Thus, we are leveraging bank-level parallelism
from Kang et al. [19].

The items described before are generated in a initialization phase that pre-
ceeds the multi-threaded hammering. In that phase, memory is allocated and
grouped by banks either by using addressing functions (which requires elevated
privileges) or by utilizing access time measurements. Afterwards, addresses from
the same group with a specified distance searched depending of the submit-
ted pattern. Thereby, it is possible to generate arbitrary statical patterns. The
double-sided pattern with the aggressor mask 101 (aggressor row, free row, ag-
gressor row) yielded good results and was used for the evaluation. During the
search, all rows that are next to an aggressor row and not an aggressor row
themselves are handled as victim rows. In the end, a list of items that match the

5

submitted aggressor mask is returned for the bank. When the items were gen-
erated for all banks, multi-threaded Rowhammer as described above is started.

4 Experimental Evaluation

4.1 Experimental Setup

Our experimental setup consists of two laptops, a ThinkPad T540p and a ThinkPad
X230T. On both, the latest BIOS version5 is installed. According to the BIOS
changelog, both systems contain a mitigation for the “risk of security vulnera-
bility related to DRAM Row Hammering” [2, 1]. The changelog, however, did
not specify which mitigation was applied. Therefore, we measured the refresh
interval on both systems before and after the BIOS update and confirmed that
they applied the double refresh rate mitigation. Details of this measurement can
be found in Section 4.2. All systems run Arch Linux. Table 1 shows the hardware
specification of our setup.

Table 1: Hardware specification of our setup.

System CPU DIMM Capacity Kernel

ThinkPad X230T i5-3320M M1 4GiB 5.11.16

ThinkPad T540p i7-4800MQ M4 4GiB 5.16.16

We use several DIMMs for the experimental evaluation which are named M1–
M6. If not stated otherwise, the experiments are done with the DIMM listed in
Table 1 for the according systems.

4.2 Measuring the Refresh Rate

By default, DDR3 DRAM is refreshed at a rate of 64ms [16]. The refresh is done
in batches containing multiple rows [26]. There are 8 192 of these batches. So,
one batch is refreshed every 64ms

8 192 ≈ 7.8µs. With a double refresh rate, one batch
is refreshed every 32ms

8 192 ≈ 3.9µs. During a refresh, there are no accesses to the
DRAM array. For this reason, accesses during a refresh are slower because they
are only executed after the refresh is done.

The refresh rate can be measured by accessing an address multiple times
from DRAM by using the clflush instruction to flush it from the CPU cache
before accessing it. When measuring the time of the access, there are fast and
slow accesses. When there is a row hit and no refresh is running, the access is

5 At the time of writing, the Thinkpad X230T had version 2.75 (2019-10-04) and the
Thinkpad T540p had version 2.38 (2020-05-19) installed.

6

fast. When data from another row is requested between two accesses, there is a
row conflict and the access is slow. When any rows are refreshed, the access is
slow as well.

Next, the duration of the accesses can be analyzed. Slow accesses are expected
at a regular basis: When they are every 7.8 µs, the system has a refresh rate of
64ms. When the are every 3.9 µs, the system has a refresh rate of 32ms.

4.3 Experimental Methods

We use the native implementation of RowhammerJS [5] andHammerTool for
our evaluation. The first one is an existing PoC for Rowhammer and the latter
one is the PoC we implemented. Both tools use dynamic memory allocation and,
therefore, scan different memory areas every time they are started. Therefore,
we repeat the measurements multiple times and compute the average value and
confidence intervals, since the occurrence of the bit flips is a statistical process
as shown in the following subsections. Most of the measurements were repeated
100 times and we show the average and confidence intervals of 99%. Most single
measurements run for 300 s. If the number of measurements, confidence interval,
or runtime differs for an experiment, it is stated there.

We also tried to use the implementation of hammertime introduced by Tatar
et al. [36] as the authors state that their implementation is able to find orders
of magnitude more bit flips on their test system. However, we were unable to
identify any bit flips using hammertime on our test systems. Since this would
require a detailled analysis of the root cause, we skipped hammertime and only
use RowhammerJS and HammerTool.

4.4 Evaluation of cmpIST

In this experiment, we run Rowhammer attacks with HammerTool in single-
thread mode and RowhammerJS. In parallel, we execute MemPressureGen
as described in Section 3.2. Figure 1 depicts the amount of bit flips found by
RowhammerJS and HammerTool within 300 s with and without MemPres-
sureGen running.

Without MemPressureGen, HammerTool finds approximately 1.32 bit
flips in 300 s on average on the X230T. With MemPressureGen, it finds ap-
proximately 125 bit flips in the same time. So, the usage of MemPressureGen
increases the amount of bit flips by a factor of 94.70. RowhammerJS finds
approximately 3.45 bit flips without MemPressureGen running in parallel.
When MemPressureGen is running in parallel, approximately 281 bit flips
are found on the X230T. MemPressureGen increases the amount of bit flips
by a factor of 81.45. So, the usage of MemPressureGen lead to an increase in
the amount of bit flips by factor 88.08 on the X230T.

HammerTool finds approximately 0.5 bit flips in 300 s on average on the
T540p when MemPressureGen is not running in parallel. With MemPres-
sureGen, it finds approximately 22.28 bit flips in the same time. The usage
of MemPressureGen increases the amount of bit flips by a factor of 44.56.

7

PoC with MemPressureGen

PoC without MemPressureGen

0 20 40 60 80 100

0

200

400

600

of the measurement

#
b
it

fl
ip

s
w
it
h
in

3
0
0
s

(a) RowhammerJS on X230T

0 20 40 60 80 100

0

50

100

of the measurement

(b) RowhammerJS on T540p

0 20 40 60 80 100

0

50

100

150

of the measurement

#
b
it

fl
ip

s
w
it
h
in

3
0
0
s

(c) HammerTool on X230T

0 20 40 60 80 100

0

20

40

60

of the measurement

(d) HammerTool on T540p

Fig. 1: Number of bit flips measured within 300 s with and without MemPres-
sureGen running in parallel.

WithoutMemPressureGen running in parallel, RowhammerJS finds approx-
imately 0.91 bit flips. In the same time, there are approximately 35.09 bit flips
found when MemPressureGen is running. So, the usage of MemPressure-
Gen increases the amount of bit flips by a factor of 38.56. The usage of Mem-
PressureGen leads to an increase in the amount of bit flips by factor 36.83 on
the T540p.

Note: We identified a bug in the flush mechanism after performing all ex-
periments. Due to that bug, HammerTool only flushed the first cache line
of a victim before comparing the entire victim. Therefore, depending on other
processes running on the same system, parts of the victim might be read from
the CPU cache instead of DRAM. A short evaluation showed that this yields
approximately two times the number of bit flips when used without MemPres-
sureGen running in parallel. This explains the difference in the number of bit
flips found by HammerTool and RowhammerJS and shows that our mea-
surements are rather conservative.

4.5 Evaluation of cmpPAR

Because Rowhammer requires accesses to the DIMMs, the speed of the hammer-
ing process is limited by the speed of the DIMMs. We show that it is possible
to hammer multiple memory locations in parallel as described in Section 3.3, if

8

they are located at different banks. The number of bit flips found in a given time
increases with the number of threads used for hammering. Figure 2 depicts the
amount of bit flips found by HammerTool in relation to the number of threads
used for hammering with and without pinning the threads to logical CPU cores.

HammerTool without CPU pinning

HammerTool with CPU pinning

1 2 3 4

0

5

10

of threads

#
b
it

fl
ip

s
w
it
h
in

3
0
0
s

(a) X230T with 4 logical cores

2 4 6 8

0

5

10

15

of threads

(b) T540p with 8 logical cores

Fig. 2: Number of bit flips found within 300 s depending on the number of threads
used by HammerTool without MemPressureGen running. The average val-
ues of 100 measurements are depicted for each number of threads with confidence
intervals of 99%. In general, the number of bit flips increases with the number
of threads.

On both systems, the graphs without CPUs pinning can be divided into two
parts: The first one in the range 1 ≤ x ≤ n

2 , where x is the number of threads
and n is the number of logical cores. The second one in the range n

2 ≤ x ≤ n. The
second part of both graphs has a stronger slope than the first one. This is due
to the fact that the scheduler tries to balance load among logical cores. When
there are ≤ n

2 threads, the scheduler can shift all threads at the same time. This
leads to the threads “jumping” across the cores6. When there are > n

2 threads,
at least one thread has to keep running because not all of them can be shifted
around the cores at the same time. We assume that this effect leads to fewer
shifting in general and, thereby to a more efficient usage of processing time.

In contrast to that, the graphs with CPUs pinning have a stronger slope in the
beginning. This can be explained with the fact that the hammering threads do
not “jump” across the cores and that they are not interrupted by other threads
so often because these are put to the “free” cores if possible. With an increase in
the number of hammering threads, there are less possibilities to schedule other
threads to other cores (in the case where x = n, there is no possibility to do so),
so the slope decreases with the number of threads.

6 This behaviour can be observed with an interactive process-viewer during the ex-
periments

9

On the T540p, it can be seen that the number of bit flips increases strongly
at every second number of threads when CPU pinning is enabled (see Figure 2b).
This effect does not occur on the X230T (see Figure 2a). The T540p has a CPU
with Haswell microarchitecture and the X230T one with Ivy Bridge Microarchi-
tecture.

The memory subsystem in Ivy Bridge can handle two 16 byte loads and one
16 byte store per cycle. For Haswell, two 32 byte loads and one 32 byte store can
be performed per cycle [32]. Ivy Bridge has a L2 → L1 bandwidth of 32 bytes per
cycle while Haswell has a L2→ L1 bandwidth of 64 bytes per cycle [32]. However,
for both microarchitectures, the L2→L3 bandwidth is 32 bytes per cycle. One
physical core and the L1 and L2 caches are shared between two hyperthreads on
both systems.

On Ivy Bridge, two hyperthreads can perform one 16 byte load each in one
cycle resulting in 32 bytes being loaded, which is also the bandwidth of L2 → L1
and L3 → L2. So, running two hyperthreads saturates the bandwidth of the
sytem.

In contrast to that, on Haswell, two hyperthreads can perform one 32 byte
load each in one cycle resulting in 64 bytes being loaded. The L2→ L1 bandwidth
is 64 bytes per cycle as well, so this saturates the L2 → L1 bandwidth as well.
However, the L3 → L2 bandwidth is only 32 bytes per cycle and thereby the
bottleneck for two hyperthreads running on the same core.

On Haswell, one hyperthread per core already saturates the L3 → L2 band-
width. When a second hyperthread is added, it does not increase the memory
access speed. Therefore, an increase happens only when a new hyperthread is
created on a new physical core (not already used for hammering), which happens
only for every second hyperthread. However, this is only a hypothesis.

4.6 Evaluation of Flipper — Combining cmpIST and cmpPAR

Both Rowhammer amplification attacks introduced in this paper can be used at
the same time leading to a substantial increase in the amount of bit flips found
in a given time. To evaluate this, we repeat the experiment from Section 4.5
with MemPressureGen running in parallel. Figure 3 shows the amount of bit
flips found with cmpIST running at the same time.

The result of the experiment from Figure 3 shows that cmpIST can be com-
bined with cmpPAR and, thereby, find more bit flips in 300 s on the X230T. The
number of bit flips peaks in the graph without CPU pinning at 3 threads on
the X230T, because MemPressureGen is running in a separate process which
leads to one logical core to run at full load. Because the X230T has 4 logical
cores, there are 3 logical cores idling when MemPressureGen is running. So,
they can be used to run 3 threads of hammering. Each of those threads brings
one logical core to full load. When there are more CPU-intensive threads than
logical CPUs on the system, the operating system has to reschedule them. This
leads to a decrease in the amount of bit flips found because the hammer threads
are interrupted by the scheduler frequently. The same applies for the T540p

10

HammerTool without CPU pinning

HammerTool with CPU pinning

1 2 3 4

0

500

1,000

1,500

of threads

#
b
it

fl
ip

s
w
it
h
in

3
0
0
s

(a) X230T with 4 logical cores

2 4 6 8

0

100

200

300

400

of threads

(b) T540p with 8 logical cores

Fig. 3: Number of bit flips found by HammerTool in 300 s with MemPres-
sureGen running in parallel. An average value from 100 measurements is de-
picted for each number of threads with confidence intervals of 99% which are
very small.

which has 8 logical cores and, therefore, a maximum at 7 threads without CPU
pinning.

With CPU pinning, the effect described in Section 4.5 can be seen again.
In contrast to the case without CPU pinning, the number of bit flips found
within 300 s increases slightly from x = n− 1 to x = n threads. This is the case
because the threads are pinned to the CPU cores and, therefore, not scheduled to
other cores (there is no “jumping”). However, there is only one thread at a time
interrupted by MemPressureGen. As the other threads are not interrupted at
that time, it can be assumed that the number of bit flips is at least at the level
of the measurement with x = n − 1 threads. The slight increase is because the
threads get some computation time even if they are interrupted.

4.7 Comparison of Attacks based on Unique Bit Flips

The previous experiments have shown that cmpIST leads to a significant increase
in the number of bit flips found in a given time. But what about unique bit flips;
can the usage of MemPressureGen lead to bit flips being discovered that
would otherwise not be found? When scanning a memory area (e. g., one THP)
for the first time, there are more bit flips found when using MemPressureGen.
To clarify if using MemPressureGen leads to more unique bit flips, the same
memory area is scanned multiple times. We define unique bit flips based on the
following parameters:

Aggressor rows that were hammered when the bit flip was triggered;
Victim row that contained the actual bit flip;
Offset in the victim row, which specifies the byte that contained the bit flip;
Flip mask which specifies the bit/bits that flipped within the byte; and
Flip direction which specifies if a bit flipped from 1 to 0 or vice versa.

11

If at least one of the parameters is different, two bit flips are considered to
be distinct. For this experiment, bit flips are only considered if they differ from
all other bit flips found within the same measurement.

In this experiment, one THP is allocated and scanned x times without
MemPressureGen. Afterwards, the amount of absolute and unique bit flips
is counted and reset. Next, MemPressureGen is started and the measurement
is repeated x times on the same THP. Then, the number of absolute and unique
flips is counted again. For each value of x, HammerTool was started 10 times
and the average value is used as result. Figure 4 depicts the amount of unique
bit flips.

0 20 40 60

0

200

400

of scans

#
b
it

fl
ip

s
w
it
h
in

3
0
0
s

(a) X230T

0 20 40 60

0

50

100

of scans

(b) T540p

0 20 40 60

0

5

10

15

of scans

r
a
t
io

(c) X230T

0 20 40 60

0

50

100

of scans

(d) T540p

HammerTool without MemPressureGen

HammerTool with MemPressureGen

ratio

Fig. 4: Subfigure (a)–(b) show the number of unique bit flips found by Hammer-
Tool with and without MemPressureGen running at the same time when
scanning the same THP x times. We show the average over 10 measurements
and confidence intervals of 99%. Subfigure (c)–(d) shows the ratio of bit flips
found with and without MemPressureGen in relation to the time of the mea-
surement. Mind the different scales of the y axes.

The measurements on both systems depicted in Figures 4a and 4b show that
there is a limited growth within the scope of the measurements. This behaviour
applies to the amount of bit flips found with and without MemPressureGen.
However, within 60 measurements of the same memory area, the amount of bit
flips measured without MemPressureGen did not reach the amount of bit flips

12

with MemPressureGen. This means that the usage of MemPressureGen
leads to more unique bit flips even when measuring multiple times.

Afterwards, the ratio between the number of unique bit flips found with
and without MemPressureGen is calculated. This ratio is shown in Figure 4c
and 4d. It can be seen that the ratio decreases with the amount of repeating
measurements. However, even when the measurements are repeated 60 times,
the ratio is still approximately 2 on the X230T and approximately 10 on the
T540p. So, cmpIST leads to more found bit flips even when the same memory
area was scanned 60 times.

On the X230T, the factor is about 13 for x = 1. The difference between
the factor of 13 in this measurement and the factor of 90 in the measurement
shown in Section 4.4, is due the parallelized mode of HammerTool and warmup
measurement errors. We assume that the sudden increase in Figure 4b values
at x = 20 is a background process that was started. However, it did not have a
significant effect to the ratio, meaning that it affected both measurements (with
and without MemPressureGen) the same way.

4.8 Relation between Measurement Time and Bit Flips Found

After the measurement of repeatedly scanning the same memory areas as de-
scribed in Section 4.7, we measure the amount of bit flips found with and with-
out the usage of MemPressureGen within a given time. Figure 5 depicts the
results of the measurement.

When MemPressureGen is used (see Figure 5a and Figure 5b), the number
of bit flips found in a given time is linearly correlated that time. So, doubeling
the measurement time results in the double number of bit flips within the range
of this experiment. This behavior can be seen on both systems, the X230T (see
Figure 5a) and the T540p (see Figure 5b).

In contrast to that, when MemPressureGen is not used (see Figure 5c and
Figure 5d), the number of bit flips found in a given time does not seem to be
linearly correlated to that time. However, when looking at the error bars, it is
likely that they are linear as well and the difference from the linear function are
just fluctuations within the depicted error range.

4.9 Amplification Factor on Systems with Double Refresh Rate

To estimate the effect of Flipper in real-world scenarios, we measure the ampli-
fication factor when combining cmpIST and cmpPAR in contrast to single-thread
hammering without cmpIST on both systems with multiple DIMMs. The amount
of bit flips found in 300 s with and without Flipper are shown in Figure 6.

Based on the results shown in Figure 6, the highest amplification factor
was 4 771 for M3 on the T540p. The lowest amplification factor was 231.64 for
M1 on the X230T. In average, the attacks introduced in this paper lead to an
amplification factor of approximately 1 675.

Consequently, despite the fact that the base implementation of Hammer-
Tool finds about half the amount of bit flips in a given time as RowhammerJS,

13

0 200 400 600

0

1,000

2,000

measurement time (in s)

#
b
it

fl
ip

s

(a) X230T with MemPressureGen

0 200 400 600

0

200

400

measurement time (in s)

(b) T540p with MemPressureGen

0 200 400 600

0

10

20

measurement time (in s)

#
b
it

fl
ip

s

(c) X230T without MemPressureGen

0 200 400 600

0

10

20

measurement time (in s)

(d) T540p without MemPressureGen

Fig. 5: Ratio of bit flips found with and without MemPressureGen in rela-
tion to the time of the measurement. Each measurement runs for 600 s with and
without MemPressureGen on the same memory areas. Afterwards, the num-
bers were summed till the time depicted on the x axis. This means, the value
at 60 s contains all bit flips found in the first 60 s, the value at 120 s contains all
flips found within the first 120 s, etc. We did 100 measurements with confidence
intervals of 99%. Mind the different scales of the y axis.

as shown in Section 4.4, Flipper effectively yields 837.5 times more bit flips in
the same time frame. This is an improvement over the state of the art by almost
3 orders of magnitude.

It should be also noted that no bit flips were found on M6 without Flipper
on both systems. When Flipper was used, both systems were affected.

5 Discussion on the Security Impact

In this Section, we would like to discuss what an increased number of flips means
regarding security.

First, it reduces the time an attacker needs to find the appropriate bits, e. g.,
bits belonging to a Page Table Entry (PTE). A bit flip in a PTE’s physical page
number can give an attacker access to different memory pages [34]. The longer
an attacker needs to find the appropriate bits, the greater the chance of getting
caught. The same applies to other exploitation approaches, e. g., flipping bits in
opcodes of binaries within the page cache, as Gruss et al. [6] showed. However,
that attack overall took 95.5 h. From that time, 26.2 h were used to find bit flips.
With our attack that time could have been significantly reduced. The same is
true for finding the correct flip to attack a page cross-VM when Kernel Samepage
Merging is enabled, as shown by Razavi et al. [30].

14

M1 M2 M3 M4 M5 M6

0

500

1,000

1,500

2,000

1,484.09

142.07
21.85

216.27
0.00 0.11

4.27 0.10 0.03 0.11 0.00 0.00

#
o
f
b
it

fl
ip

s
w
it
h
in

3
0
0

s
w Flipper

w/o Flipper

(a) X230T

M1 M2 M3 M4 M5 M6

0

500

1,000

1,500

2,000
1,657.45

180.87
47.71

399.11

0.00 1.20

0.89 0.12 0.01 0.50 0.00 0.00

#
o
f
b
it

fl
ip

s
w
it
h
in

3
0
0

s

w Flipper

w/o Flipper

(b) T540p

Fig. 6: Comparison of the number of bit flips with and without Flipper for six
different DDR3 DRAM modules. The error bars show 99% confidence intervals
and are so small that they are nearly not visible.

Second, since our attack also finds bit flips that would not have been found
without our attack, the chance of finding bit flips at the right places is higher. Our
experiments show that our attack finds bit flips that other tools, e. g., Rowham-
merJS, did not find. Therefore, the chances are higher to find bit flips that are
security-relevant.

Third, the BIOS update enabled the double refresh rate mitigation on both
test systems. So, all our experiments were run with this mitigation enabled.
Thus, our presented attacks help to bypass this mitigation technique.

6 Countermeasures

Defending Rowhammer attacks is a difficult task, particularly since it is a hard-
ware side-effect. Since the cmsp and repe x86 instructions are available in user
space, there is no easy countermeasure. The microcode implementation is not
public, this is why we can only speculate about countermeasures.

One possible countermeasure would be to adjust the microcode implemen-
tation to behave like a normal memory comparison internally. However, that
would introduce a performance decrease of around factor 2.65 as described in
Section 3.2. Increasing the refresh rate further, such as 2–4 times [29], would be
possible, but that comes with disadvantages. A higher refresh rate would mean
more power consumption and less performance without a guarantee to mitigate
Rowhammer completely.

15

7 Related Work

Kim et al. [21] were the first that described the technical details behind Rowham-
mer. One year later, Seaborn [34] published an exploit based on Rowhammer,
which can be used for local privilege escalation. They published their tool for
automated Rowhammer testing. This tool uses a probabilistic approach which
means that it is not required to know the mapping between memory addresses
and their locations.

Gruss et al. [5] described the approach of executing a Rowhammer attack
without the usage of the clflush instruction by evicting cache lines from the
CPU cache instead. The source code published in the scope of that paper in-
cluded a native component with clflush as well. That tool makes it possible to
find bit flips when the addressing functions of the memory controller are known.
We use RowhammerJS to evaluate our tool.

In 2016, Pessl et al. [27] described an approach to automatically reverse-
engineer the addressing functions of the memory controller by using time-based
measurements. We have implemented their time-based approach in Hammer-
Tool. Additionally, we compare the addressing functions reverse-engineered by
HammerTool to the ones reverse-engineered by Drama. Both tools identify
the same addressing function on our test systems.

In the same year, Razavi et al. [30] described an approach to exploit rowham-
mer in a virtualized environment. To get the correct address mappings, they use
THPs, which we also do. This approach is used to get contiguous physical mem-
ory and, thereby, remove the need to know the physical addresses.

There are several publications that use parallelized hammering. Some of them
stated that it has a positive impact on the number of bit flips found in a given
time [23, 13, 7, 19]. Others state that is has a negative impact [28]. We imple-
mented and evaluated the approach and showed that it has a positive impact.

Ridder et al. [31] introduced rowhammer on DDR4 DRAM in JavaScript from
the browser. They described an novel approach that exploits DDR4 memory
with implemented mitigation against Rowhammer anyway. They increased the
hammering pattern by using a double pointer chase; in contrast to our work, we
use multithreading and special instructions to increase the hammering frequency.

In 2022, Jattke et al. [14] also explored fuzzing of hammering patterns to
find more effective patterns. These patterns are exploitable on specific DRAM
modules, bypassing defenses that target only specific hammering patterns.

In 2024, Kang et al. [19] showed that it is possible to perform Rowhammer
attacks parallelized at DRAM bank level. They used the effect that the mem-
ory controller parallelizes serial memory access instructions. With DDR4, they
inspected a significant increase in the number of bit flips. However, they were
unable to reproduce this behaviour on DDR3 where the number of bit flips even
decreased with their parallelization approach. Kim et al. [21] reported threshold
number of activations of at least 139 k within one tREFI for DDR3. In contrast,
Frigo et al. [4] showed that 45 k activations within one tREFI are sufficient for
DDR4. So, the number of activation within one tREFI required to trigger bit flips
is significantly higher on DDR3 than on DDR4. We hypothesize that bank-level

16

parallelization leads to more overall accesses, e. g., to all banks, but reduces the
number of accesses to a single bank. While the reduced number of activations
for the single banks is still sufficient to trigger bit flips on DDR4 systems, it is
not on DDR3 systems. For DDR4, the bank-level parallelization increases the
overall number of bit flips, because multiple banks are accessed at the same time
effectively. In contrast, when multiple treads are used, the overall number of ac-
cesses is higher, so the number of activations is sufficient for DDR4, but also still
sufficient for DDR3. Therefore, multiple banks on DDR3 can be hammered in
parallel when using multi-threading, while bank-level parallelism on the memory
controller itself is not sufficient to increase the number of bit flips when a single
thread is used.

8 Conclusion and Future Work

In this paper, we showed that the number of bit flips can be increased by using
two primitives: A combination of the x86 instructions cmpsb and repe leads to
an increase in the number of bit flips found in a given time. Also, the parallel
execution of Rowhammer attacks as previously described [23, 13, 7] yielded a sig-
nificant increase. We evaluated Flipper, our implementation of both primitives,
and showed that it brings amplification factors of 830 compared to Rowham-
merJS [5] on DDR3 DRAM. We showed that Flipper leads to bit flips that
did not occur without using it. We ran our experiments on systems that have
the double refresh rate mitigation activated. We showed that Flipper can help
to bypass this mitigation technique.

As described before, DDR4 and DDR5 are gradually replacing DDR3 on the
market. Therefore, the experiments we described in Section 4 should be repeated
on DDR4 and DDR5 DIMMs in future work. Additionally, the amount of DIMMs
should be increased to understand this vulnerability better and analyze other
instructions to see whether they have similar effects.

Acknowledgements This work was funded by the Deutsche Forschungsge-
meinschaft (DFG) under grant number 503876675, and partly funded by the
European Union under grant number ROF-SG20-3066-3-2-2.

References

[1] BIOS Update Utility README (T540p). 2015. url: https://download.
lenovo.com/pccbbs/mobiles/gmuj16us.txt.

[2] BIOS Update Utility README (X230T). 2015. url: https://download.
lenovo.com/pccbbs/mobiles/gcuj22us.txt.

[3] Erik Bosman et al. “Dedup Est Machina: Memory Deduplication as an
Advanced Exploitation Vector”. In: S&P. 2016.

[4] Pietro Frigo et al. “TRRespass: Exploiting the Many Sides of Target Row
Refresh”. In: S&P. 2020.

17

https://download.lenovo.com/pccbbs/mobiles/gmuj16us.txt
https://download.lenovo.com/pccbbs/mobiles/gmuj16us.txt
https://download.lenovo.com/pccbbs/mobiles/gcuj22us.txt
https://download.lenovo.com/pccbbs/mobiles/gcuj22us.txt

[5] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. “Rowhammer.js:
A Remote Software-Induced Fault Attack in JavaScript”. In: DIMVA.
2016.

[6] Daniel Gruss et al. “Another Flip in the Wall of Rowhammer Defenses”.
In: S&P. 2018.

[7] Wei He et al. “WhistleBlower: A System-level Empirical Study on
RowHammer”. In: IEEE Transactions on Computers (2023).

[8] Martin Heckel and Florian Adamsky. “Reverse-Engineering Bank Address-
ing Functions on AMD CPUs”. In: Workshop on DRAM Security (DRAM-
Sec). 2023.

[9] Christian Helm, Soramichi Akiyama, and Kenjiro Taura. “Reliable Reverse
Engineering of Intel DRAM Addressing Using Performance Counters”. In:
Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS). IEEE. 2020.

[10] iAPX 286 Programmer’s Reference Manual. 1983. url: http : / /

bitsavers.org/components/intel/80286/210498- 001_iAPX_286_

Programmers_Reference_1983.pdf.
[11] IC Insights. Distribution of DRAM Market Revenue Worldwide from

2010 to 2021. Statista. Jan. 1, 2021. url: https : / / www . statista .

com / statistics / 553383 / worldwide - dram - market - share - by -

architecture/.
[12] Intel® 64 and IA-32 ArchitecturesSoftware Developer’s Manual - Volume

1: Basic Architecture. Apr. 2021. url: https://software.intel.com/
content/www/us/en/develop/articles/intel-sdm.html.

[13] Yeongjin Jang et al. “SGX-Bomb: Locking Down the Processor via
Rowhammer Attack”. In: SysTEX. 2017. doi: 10.1145/3152701.3152709.

[14] Patrick Jattke et al. “BLACKSMITH: Rowhammering in the Frequency
Domain”. In: S&P. Nov. 2021.

[15] Patrick Jattke et al. “ZenHammer: Rowhammer Attacks on AMD Zen-
based Platforms”. In: USENIX Security. 2024.

[16] JEDEC Solid State Technology Association. DDR3 SDRAM STANDARD.
2012. url: https://www.jedec.org/standards-documents/docs/jesd-
79-3d.

[17] JEDEC Solid State Technology Association. DDR4 SDRAM STANDARD.
2021. url: https://www.jedec.org/standards- documents/docs/
jesd79-4a.

[18] JEDEC Solid State Technology Association. DDR5 SDRAM STANDARD.
2024. url: https://www.jedec.org/standards- documents/docs/
jesd79-5c01.

[19] Ingab Kang et al. “SledgeHammer: Amplifying Rowhammer via Bank-level
Parallelism”. In: USENIX Security. 2024.

[20] Yoongu Kim et al. “A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM”. In: ISCA. 2012. doi: 10.1109/ISCA.2012.6237032.

18

http://bitsavers.org/components/intel/80286/210498-001_iAPX_286_Programmers_Reference_1983.pdf
http://bitsavers.org/components/intel/80286/210498-001_iAPX_286_Programmers_Reference_1983.pdf
http://bitsavers.org/components/intel/80286/210498-001_iAPX_286_Programmers_Reference_1983.pdf
https://www.statista.com/statistics/553383/worldwide-dram-market-share-by-architecture/
https://www.statista.com/statistics/553383/worldwide-dram-market-share-by-architecture/
https://www.statista.com/statistics/553383/worldwide-dram-market-share-by-architecture/
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://doi.org/10.1145/3152701.3152709
https://www.jedec.org/standards-documents/docs/jesd-79-3d
https://www.jedec.org/standards-documents/docs/jesd-79-3d
https://www.jedec.org/standards-documents/docs/jesd79-4a
https://www.jedec.org/standards-documents/docs/jesd79-4a
https://www.jedec.org/standards-documents/docs/jesd79-5c01
https://www.jedec.org/standards-documents/docs/jesd79-5c01
https://doi.org/10.1109/ISCA.2012.6237032

[21] Yoongu Kim et al. “Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors”. In: ISCA. 2014.
doi: 10.1109/ISCA.2014.6853210.

[22] Andreas Kogler et al. “Half-Double: Hammering From the Next Row
Over”. In: USENIX Security. 2022.

[23] Mark Lanteigne. How Rowhammer Could Be Used to Exploit Weak-
nesses in Computer Hardware. 2016. url: http://www.thirdio.com/
rowhammer.pdf.

[24] Moritz Lipp et al. “Nethammer: Inducing Rowhammer Faults through
Network Requests”. In: SILM Workshop. 2020.

[25] Haocong Luo et al. “RowPress: Amplifying Read Disturbance in Modern
DRAM Chips”. In: ISCA. 2023.

[26] Measuring the DRAM refresh rate by timing memory accesses. 2015. url:
https://github.com/google/rowhammer-test/blob/master/refresh_

timing/README.md.
[27] Peter Pessl et al. “DRAMA: Exploiting DRAM Addressing for Cross-CPU

Attacks”. In: USENIX Security. 2016.
[28] Rui Qiao and Mark Seaborn. “A New Approach for Rowhammer Attacks”.

In: HOST. 2016.
[29] Moinuddin Qureshi. “Rethinking ECC in the Era of Row-Hammer”. In:

DRAMSec. 2021. url: https://dramsec.ethz.ch/papers/rethinking-
ecc.pdf.

[30] Kaveh Razavi et al. “Flip Feng Shui: Hammering a Needle in the Software
Stack”. In: USENIX Security. 2016.

[31] Finn de Ridder et al. “SMASH: Synchronized Many-sided Rowhammer
Attacks From JavaScript”. In: USENIX Security. 2021.

[32] Subhash Saini et al. “Performance Evaluation of an Intel Haswell-and Ivy
Bridge-Based Supercomputer Using Scientific and Engineering Applica-
tions”. In: HPCC-SmartCity-DSS. 2016, pp. 1196–1203. doi: 10.1109/
HPCC-SmartCity-DSS.2016.0167.

[33] Jerome H. Saltzer and M. Frans Kaashoek. Principles of Computer System
Design: An Introduction. 2009.

[34] Mark Seaborn. Exploiting the DRAM rowhammer bug to gain kernel priv-
ileges. Mar. 2015. url: http://googleprojectzero.blogspot.com/
2015/03/exploiting-dram-rowhammer-bug-to-gain.html.

[35] Ken Shirriff. The Microcode and Hardware in the 8086 Processor that Per-
form String Operations. 2023. url: https://www.righto.com/2023/04/
8086-microcode-string-operations.html.

[36] Andrei Tatar et al. “Defeating software mitigations against rowhammer: a
surgical precision hammer”. In: RAID. 2018.

[37] Andrei Tatar et al. “Throwhammer: Rowhammer Attacks over the Net-
work and Defenses”. In: USENIX Security. July 2018.

[38] Victor van der Veen et al. “Drammer: Deterministic Rowhammer Attacks
on Mobile Platforms”. In: ACM CCS. 2016.

19

https://doi.org/10.1109/ISCA.2014.6853210
http://www.thirdio.com/rowhammer.pdf
http://www.thirdio.com/rowhammer.pdf
https://github.com/google/rowhammer-test/blob/master/refresh_timing/README.md
https://github.com/google/rowhammer-test/blob/master/refresh_timing/README.md
https://dramsec.ethz.ch/papers/rethinking-ecc.pdf
https://dramsec.ethz.ch/papers/rethinking-ecc.pdf
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0167
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0167
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://www.righto.com/2023/04/8086-microcode-string-operations.html
https://www.righto.com/2023/04/8086-microcode-string-operations.html

[39] Minghua Wang et al. “Dramdig: A Knowledge-assisted Tool to Uncover-
DRAM Address Mapping”. In: Design Automation Conference (DAC).
2020.

[40] Yuan Xiao et al. “One Bit Flips, One Cloud Flops: Cross-VM Row Hammer
Attacks and Privilege Escalation”. In: USENIX Security. 2016.

[41] Zhenkai Zhang et al. “Triggering Rowhammer Hardware Faults on ARM:
A Revisit”. In: Proceedings of the 2018 Workshop on Attacks and Solutions
in Hardware Security. 2018.

20

	Flipper: Rowhammer on Steroids

