Techniken zur Identifizierung von Netzwerk-Protokollen

Florian Adamsky

27C3: We come in Peace

28. Dezember 2010

Inhaltsverzeichnis

- 1 Einleitung
- 2 Netzwerkprotokoll Identifizierung
 - Definition
 - Techniken
- 3 Statistical Protocol IDentification
 - Algorithmus Details
 - Gruppierung in Flows
 - Operation
 - Implementierung
 - Messverfahren
- 4 Evaluierung
 - Ergebnisse
- 5 Ausblick: Protokoll-Obfuskation

Einleitung

- suchte spannendes Thema für meine Bachelorthesis
- Zugangserschwerungsgesetz
- intelligente Dienstgüte (QoS) für Heimnetzwerke

Einleitung

- suchte spannendes Thema für meine Bachelorthesis
- Zugangserschwerungsgesetz
- intelligente Dienstgüte (QoS) für Heimnetzwerke

Einleitung

- suchte spannendes Thema für meine Bachelorthesis
- Zugangserschwerungsgesetz
- intelligente Dienstgüte (QoS) für Heimnetzwerke

QoSiLAN = Quality of Service for Local Area Networks

1. Phase

Analysieren des Netzwerks 2 Phase

Identifizieren der Protokolle 3. Phase

Reservieren und Priorisieren der Bandbreite

Anforderungen

Nahe-Echtzeit Erkennung

Fokus auf Streaming-Protokolle

QoSiLAN = Quality of Service for Local Area Networks

1. Phase

Analysieren des Netzwerks

2. Phase

Identifizieren der Protokolle

3. Phase

Reservieren und Priorisieren der Bandbreite

Anforderungen

QoSiLAN = Quality of Service for Local Area Networks

1. Phase

Analysieren des Netzwerks

2. Phase

Identifizieren der Protokolle

3. Phase

Reservieren und Priorisieren der Bandbreite

Anforderungen

QoSiLAN = Quality of Service for Local Area Networks

1. Phase

Analysieren des Netzwerks

2. Phase

Identifizieren der Protokolle

3. Phase

Reservieren und Priorisieren der Bandbreite

Anforderungen

Nahe-Echtzeit Erkennung

QoSiLAN = Quality of Service for Local Area Networks

1. Phase

Analysieren des Netzwerks

2. Phase

Identifizieren der Protokolle

3. Phase

Reservieren und Priorisieren der Bandbreite

Anforderungen

- Nahe-Echtzeit Erkennung
- Fokus auf Streaming-Protokolle
- Portabilität

QoSiLAN = Quality of Service for Local Area Networks

1. Phase

Analysieren des Netzwerks

2. Phase

Identifizieren der Protokolle

3. Phase

Reservieren und Priorisieren der Bandbreite

Anforderungen

- Nahe-Echtzeit Erkennung
- Fokus auf Streaming-Protokolle
- Portabilität

QoSiLAN = Quality of Service for Local Area Networks

1. Phase

Analysieren des Netzwerks

2. Phase

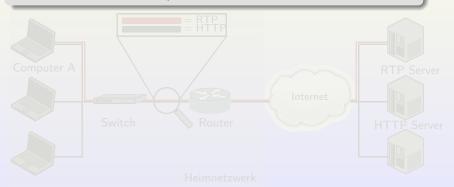
Identifizieren der Protokolle

3. Phase

Reservieren und Priorisieren der Bandbreite

Anforderungen

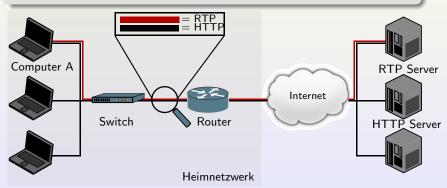
- Nahe-Echtzeit Erkennung
- Fokus auf Streaming-Protokolle
- Portabilität


Inhaltsverzeichnis

- Einleitung
- Netzwerkprotokoll Identifizierung
 - Definition
 - Techniken
- Statistical Protocol IDentification
 - Algorithmus Details
 - Gruppierung in Flows
 - Operation
 - Implementierung
 - Messverfahren
- 4 Evaluierung
 - Ergebnisse
- 5 Ausblick: Protokoll-Obfuskation

- Netzwerkprotokoll Identifizierung
 - L Definition

Definition


Identifizierung des Protokolls, welches auf Layer 7 des OSI-Modells oder auf Layer 4 des TCP/IP-Modells läuft.

- Netzwerkprotokoll Identifizierung
 - L Definition

Definition

Identifizierung des Protokolls, welches auf Layer 7 des OSI-Modells oder auf Layer 4 des TCP/IP-Modells läuft.

L Definition

Weitere Begriffe

- Application Identification
- Port Independent Protocol Identification (PIPI)
- Protocol Discovery
- Application Recognition
- Traffic Classification

└ Definition

Weitere Begriffe

- Application Identification
- Port Independent Protocol Identification (PIPI)
- Protocol Discovery
- Application Recognition
- Traffic Classification

L Definition

Weitere Begriffe

- Application Identification
- Port Independent Protocol Identification (PIPI)
- Protocol Discovery
- Application Recognition
- Traffic Classification

L Definition

Weitere Begriffe

- Application Identification
- Port Independent Protocol Identification (PIPI)
- Protocol Discovery
- Application Recognition
- Traffic Classification

L Definition

Weitere Begriffe

- Application Identification
- Port Independent Protocol Identification (PIPI)
- Protocol Discovery
- Application Recognition
- Traffic Classification

L Definition

Anforderungen an die Techniken

- Hohe Trefferquote mit wenigen oder keinen Falsch-Positiven
- Echtzeit-Erkennung unter hoher Netzwerklast
- Robust unter verschiedenen Netzwerkkonfigurationen
- Einfache Möglichkeit neue Protokolle zu lernen
- Resistent gegen Protokoll-Obfuskation

- Netzwerkprotokoll Identifizierung
 - └ Definition

- Hohe Trefferquote mit wenigen oder keinen Falsch-Positiven
- Echtzeit-Erkennung unter hoher Netzwerklast
- Robust unter verschiedenen Netzwerkkonfigurationen
- Einfache Möglichkeit neue Protokolle zu lernen
- Resistent gegen Protokoll-Obfuskation

- Netzwerkprotokoll Identifizierung
 - L Definition

- Hohe Trefferquote mit wenigen oder keinen Falsch-Positiven
- Echtzeit-Erkennung unter hoher Netzwerklast
- Robust unter verschiedenen Netzwerkkonfigurationen
- Einfache Möglichkeit neue Protokolle zu lernen
- Resistent gegen Protokoll-Obfuskation

- Netzwerkprotokoll Identifizierung
 - L Definition

- Hohe Trefferquote mit wenigen oder keinen Falsch-Positiven
- Echtzeit-Erkennung unter hoher Netzwerklast
- Robust unter verschiedenen Netzwerkkonfigurationen
- Einfache Möglichkeit neue Protokolle zu lernen
- Resistent gegen Protokoll-Obfuskation

- └ Netzwerkprotokoll Identifizierung
 - L Definition

- Hohe Trefferquote mit wenigen oder keinen Falsch-Positiven
- Echtzeit-Erkennung unter hoher Netzwerklast
- Robust unter verschiedenen Netzwerkkonfigurationen
- Einfache Möglichkeit neue Protokolle zu lernen
- Resistent gegen Protokoll-Obfuskation

Einsatzmöglichkeit

Netzwerk

- Bandbreitenmanagement mit QoS
- Security durch Intrusion Detection Systems (IDS) oder Intrusion Prevention Systems (IPS)
- graduelle Datentarife und Ad-Injection

politische und soziale Kontrolle

- abhören und überwachen des Internetverkehrs
- filtern und zensieren von unliebsamen Inhalten

- Netzwerkprotokoll Identifizierung
 - L Definition

Einsatzmöglichkeit

Netzwerk

- Bandbreitenmanagement mit QoS
- Security durch Intrusion Detection Systems (IDS) oder Intrusion Prevention Systems (IPS)
- graduelle Datentarife und Ad-Injection

politische und soziale Kontrolle

- abhören und überwachen des Internetverkehrs
- filtern und zensieren von unliebsamen Inhalten

- Netzwerkprotokoll Identifizierung
 - L Definition

Einsatzmöglichkeit

Netzwerk

- Bandbreitenmanagement mit QoS
- Security durch Intrusion Detection Systems (IDS) oder Intrusion Prevention Systems (IPS)
- graduelle Datentarife und Ad-Injection

politische und soziale Kontrolle

- abhören und überwachen des Internetverkehrs
- filtern und zensieren von unliebsamen Inhalten

L Definition

Einsatzmöglichkeit

Netzwerk

- Bandbreitenmanagement mit QoS
- Security durch Intrusion Detection Systems (IDS) oder Intrusion Prevention Systems (IPS)
- graduelle Datentarife und Ad-Injection

politische und soziale Kontrolle

- abhören und überwachen des Internetverkehrs
- filtern und zensieren von unliebsamen Inhalten

L Definition

Einsatzmöglichkeit

Netzwerk

- Bandbreitenmanagement mit QoS
- Security durch Intrusion Detection Systems (IDS) oder Intrusion Prevention Systems (IPS)
- graduelle Datentarife und Ad-Injection

politische und soziale Kontrolle

- abhören und überwachen des Internetverkehrs
- filtern und zensieren von unliebsamen Inhalten

└─ Techniken

Techniken

- 1 TCP/UDP Portnummern
- ② Deep Packet Inspection
- Maschinen-Lern-Algorithmen
- 4 Hybrid-Formen

___Techniken

TCP/UDP Portnummern

Theorem

Portnummern sind keine robuste Methode zur Identifizierung.

Beweis

- Netzwerkprotokoll Identifizierung
 - L-Techniken

TCP/UDP Portnummern

Theorem

Portnummern sind keine robuste Methode zur Identifizierung.

Beweis.

- Studie: rund 50–70 % des Internet-Verkehrs kann identifiziert werden
- viele Anwendungen haben keine eindeutigen Portnummern (z.B. P2P)
- einige Ports sind mehrfach vergeben (z.B. TCP Port 888)
- Firewalls und NAT sind schuld, dass fast alles über Port 80 kommuniziert
- Angriffe sind üblicherweise nicht mit einem Port verknüpft

- └ Netzwerkprotokoll Identifizierung
 - L-Techniken

TCP/UDP Portnummern

Theorem

Portnummern sind keine robuste Methode zur Identifizierung.

Beweis.

- Studie: rund 50–70 % des Internet-Verkehrs kann identifiziert werden
- viele Anwendungen haben keine eindeutigen Portnummern (z.B. P2P)
- einige Ports sind mehrfach vergeben (z.B. TCP Port 888)
- Firewalls und NAT sind schuld, dass fast alles über Port 80 kommuniziert
- Angriffe sind üblicherweise nicht mit einem Port verknüpft

- └ Netzwerkprotokoll Identifizierung └ Techniken
- TCP/UDP Portnummern

Theorem

Portnummern sind keine robuste Methode zur Identifizierung.

Beweis.

- Studie: rund 50–70 % des Internet-Verkehrs kann identifiziert werden
- viele Anwendungen haben keine eindeutigen Portnummern (z.B. P2P)
- einige Ports sind mehrfach vergeben (z.B. TCP Port 888)
- Firewalls und NAT sind schuld, dass fast alles über Port 80 kommuniziert
- Angriffe sind üblicherweise nicht mit einem Port verknüpft

- Netzwerkprotokoll Identifizierung
 - Techniken

TCP/UDP Portnummern

Theorem

Portnummern sind keine robuste Methode zur Identifizierung.

Beweis.

- Studie: rund 50–70 % des Internet-Verkehrs kann identifiziert werden
- viele Anwendungen haben keine eindeutigen Portnummern (z.B. P2P)
- einige Ports sind mehrfach vergeben (z.B. TCP Port 888)
- Firewalls und NAT sind schuld, dass fast alles über Port 80 kommuniziert
- Angriffe sind üblicherweise nicht mit einem Port verknüpft

- Netzwerkprotokoll Identifizierung
 - Techniken

TCP/UDP Portnummern

Theorem

Portnummern sind keine robuste Methode zur Identifizierung.

Beweis.

- Studie: rund 50–70 % des Internet-Verkehrs kann identifiziert werden
- viele Anwendungen haben keine eindeutigen Portnummern (z.B. P2P)
- einige Ports sind mehrfach vergeben (z.B. TCP Port 888)
- Firewalls und NAT sind schuld, dass fast alles über Port 80 kommuniziert
- Angriffe sind üblicherweise nicht mit einem Port verknüpft

└─ Techniken

Deep Packet Inspection

Definition

Die DPI identifziert Protokolle mit *multi-pattern matching* Algorithmen. Bedeutet nicht "tief ins Paket" schauen.

L-Techniken

Deep Packet Inspection

Definition

Die DPI identifziert Protokolle mit *multi-pattern matching* Algorithmen. Bedeutet nicht "tief ins Paket" schauen.

- Pattern wird "application signature" genannt
- Im Moment die zuverlässigste Methode um Protokolle zu erkennen
- hohe Verbreitung in kommerziellen Produkten

L Techniken

Deep Packet Inspection

Definition

Die DPI identifziert Protokolle mit *multi-pattern matching* Algorithmen. Bedeutet nicht "tief ins Paket" schauen.

- Pattern wird "application signature" genannt
- Im Moment die zuverlässigste Methode um Protokolle zu erkennen
- hohe Verbreitung in kommerziellen Produkten

L Techniken

Deep Packet Inspection

Definition

Die DPI identifziert Protokolle mit *multi-pattern matching* Algorithmen. Bedeutet nicht "tief ins Paket" schauen.

- Pattern wird "application signature" genannt
- Im Moment die zuverlässigste Methode um Protokolle zu erkennen
- hohe Verbreitung in kommerziellen Produkten

L_Techniken

Deep Packet Inspection

String matching

exakter Treffer

- Aho-Corasick
- Wu-Manber
- SBOM

annähernde Treffer

Bloomfilter

reguläre Ausdrücke

L7-Filter

L-Techniken

Deep Packet Inspection

String matching

exakter Treffer

- Aho-Corasick
- Wu-Manber
- SBOM

annähernde Treffer

Bloomfilter

reguläre Ausdrücke

• L7-Filter

L Techniken

Deep Packet Inspection

String matching

exakter Tre<u>ffer</u>

- Aho-Corasick
- Wu-Manber
- SBOM

annähernde Treffer

Bloomfilter

reguläre Ausdrücke

L7-Filter

└ Techniken

Deep Packet Inspection

Probleme

- keine Identifizierung, wenn Payload nicht lesbar ist
- hoher Aufwand notwendig, um neue Protokolle hinzuzufügen
 Dokumentation studieren und Gesetzmäßigkeiten finden
 Gesetzmäßigkeiten milssen genflegt werden
- Es gibt Ansätze um automatisiert nach "Application Signature" zu suchen
- hohes Missbrauchspotenzial

L Techniken

Deep Packet Inspection

Probleme

- keine Identifizierung, wenn Payload nicht lesbar ist
- hoher Aufwand notwendig, um neue Protokolle hinzuzufügen
 - Dokumentation studieren und Gesetzmäßigkeiten finden
 - Gesetzmäßigkeiten müssen gepflegt werden
- Es gibt Ansätze um automatisiert nach "Application Signature" zu suchen
- hohes Missbrauchspotenzial

└─ Techniken

Deep Packet Inspection

Probleme

- keine Identifizierung, wenn Payload nicht lesbar ist
- hoher Aufwand notwendig, um neue Protokolle hinzuzufügen
 - Dokumentation studieren und Gesetzmäßigkeiten finden
 - Gesetzmäßigkeiten müssen gepflegt werden
- Es gibt Ansätze um automatisiert nach "Application Signature" zu suchen
- hohes Missbrauchspotenzial

└ Netzwerkprotokoll Identifizierung └ Techniken

Deep Packet Inspection

Probleme

- keine Identifizierung, wenn Payload nicht lesbar ist
- hoher Aufwand notwendig, um neue Protokolle hinzuzufügen
 - Dokumentation studieren und Gesetzmäßigkeiten finden
 - Gesetzmäßigkeiten müssen gepflegt werden
- Es gibt Ansätze um automatisiert nach "Application Signature" zu suchen
- hohes Missbrauchspotenzial

└─ Techniken

Deep Packet Inspection

Probleme

- keine Identifizierung, wenn Payload nicht lesbar ist
- hoher Aufwand notwendig, um neue Protokolle hinzuzufügen
 - Dokumentation studieren und Gesetzmäßigkeiten finden
 - Gesetzmäßigkeiten müssen gepflegt werden
- Es gibt Ansätze um automatisiert nach "Application Signature" zu suchen
- hohes Missbrauchspotenzial

L-Techniken

Deep Packet Inspection

Probleme

- keine Identifizierung, wenn Payload nicht lesbar ist
- hoher Aufwand notwendig, um neue Protokolle hinzuzufügen
 - Dokumentation studieren und Gesetzmäßigkeiten finden
 - Gesetzmäßigkeiten müssen gepflegt werden
- Es gibt Ansätze um automatisiert nach "Application Signature" zu suchen
- hohes Missbrauchspotenzial

Techniken

Maschinen-Lern-Algorithmen

Überwachtes Lernen

- Support Vector Machine
- Decision Tree
- Naive Bayes

Probleme

Unüberwachtes Lerner

Neuronale Netze

Techniken

Maschinen-Lern-Algorithmen

Überwachtes Lernen

- Support Vector Machine
- Decision Tree
- Naive Bayes

Probleme

Unüberwachtes Lernen

Neuronale Netze

Techniken

Maschinen-Lern-Algorithmen

Überwachtes Lernen

- Support Vector Machine
- Decision Tree
- Naive Bayes

Unüberwachtes Lernen

Neuronale Netze

Probleme

- mathematisch komplex; daher aufwendig zu berechnen
- benötigen meist abgeschlossene Flows, sind daher unbrauchbar für Echtzeit-Identifizierung

└ Netzwerkprotokoll Identifizierung └ Techniken

Maschinen-Lern-Algorithmen

Überwachtes Lernen

- Support Vector Machine
- Decision Tree
- Naive Bayes

Unüberwachtes Lernen

Neuronale Netze

Probleme

- mathematisch komplex; daher aufwendig zu berechnen
- benötigen meist abgeschlossene Flows, sind daher unbrauchbar für Echtzeit-Identifizierung

___Techniken

Hybrid-Formen

werden vermehrt verwendet

Beispiel

- bekannte Protokolle mit DPI
- unbekannte Protokolle mit Statistik

Netzwerkprotokoll Identifizierung
Techniken

Hybrid-Formen

werden vermehrt verwendet

Beispiel

- bekannte Protokolle mit DPI
- unbekannte Protokolle mit Statistik

└─ Netzwerkprotokoll Identifizierung └─ Techniken

Hybrid-Formen

werden vermehrt verwendet

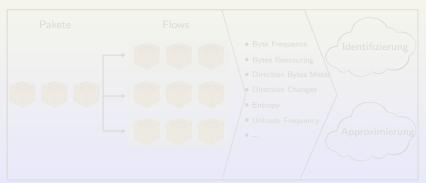
Beispiel

- bekannte Protokolle mit DPI
- unbekannte Protokolle mit Statistik

Inhaltsverzeichnis

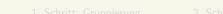
- 1 Einleitung
- 2 Netzwerkprotokoll Identifizierung
 - Definition
 - Techniken
- Statistical Protocol IDentification
 - Algorithmus Details
 - Gruppierung in Flows
 - Operation
 - Implementierung
 - Messverfahren
- 4 Evaluierung
 - Ergebnisse
- Ausblick: Protokoll-Obfuskation

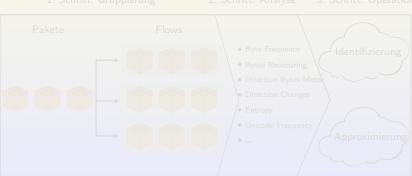
Algorithmus Details


Wer hat's erfunden?

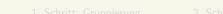
- SPID: Statistical Protocol IDentification
- 2009 entwickelt von Erik Hjelmvik und Wolfgang John

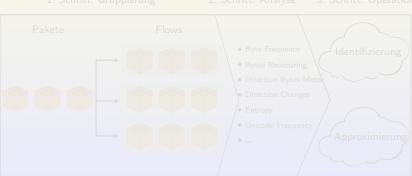
1. Schritt: Gruppierung


2. Schritt: Analyse


8. Schritt: Operation

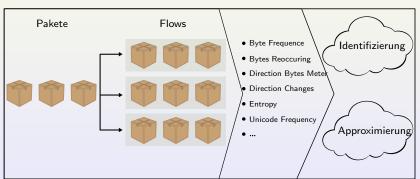
Wer hat's erfunden?


- SPID: Statistical Protocol IDentification
- 2009 entwickelt von Erik Hjelmvik und Wolfgang John



Wer hat's erfunden?

- SPID: Statistical Protocol IDentification
- 2009 entwickelt von Erik Hjelmvik und Wolfgang John



- Statistical Protocol IDentification
 - LAlgorithmus Details

Wer hat's erfunden?

- SPID: Statistical Protocol IDentification
- 2009 entwickelt von Erik Hjelmvik und Wolfgang John
 - 1. Schritt: Gruppierung

- 2. Schritt: Analyse
- 3. Schritt: Operation

Gruppierung

- Analyse auf bidirektionalen Flows
- Flows werden erkannt durch 5-Tupe
- 5-Tupel ist definiert:
 - source IP
 - source Port
 - destination IP
 - destination Port
 - transport protokol

ГСР

- Flow beginnt erst nach Three-Way-Handshake
 - Kaltstart-Problem
- Pure ACKs werden ignoriert, da kein Payload enthalten ist

Gruppierung

- Analyse auf bidirektionalen Flows
- Flows werden erkannt durch 5-Tupel
- 5-Tupel ist definiert:
 - source IP
 - source Port
 - destination IP
 - destination Port
 - transport protokol

ГСР

- Flow beginnt erst nach Three-Way-Handshake
 - Kaltstart-Problem
- Pure ACKs werden ignoriert, da kein Payload enthalten ist

Gruppierung

- Analyse auf bidirektionalen Flows
- Flows werden erkannt durch 5-Tupel
- 5-Tupel ist definiert:
 - source IP
 - source Port
 - destination IP
 - destination Port
 - transport protokol

ГСР

- Flow beginnt erst nach Three-Way-Handshake
 - Kaltstart-Problem
- Pure ACKs werden ignoriert, da kein Payload enthalten ist

Gruppierung

- Analyse auf bidirektionalen Flows
- Flows werden erkannt durch 5-Tupel
- 5-Tupel ist definiert:
 - source IP
 - source Port
 - destination IP
 - destination Port
 - transport protokol

ГСР

- Flow beginnt erst nach Three-Way-Handshake
 - Kaltstart-Problem
- Pure ACKs werden ignoriert, da kein Payload enthalten ist

Gruppierung

- Analyse auf bidirektionalen Flows
- Flows werden erkannt durch 5-Tupel
- 5-Tupel ist definiert:
 - source IP
 - source Port
 - destination IP
 - destination Port
 - transport protokol

ГСР

- Flow beginnt erst nach Three-Way-Handshake
 - Kaltstart-Problem
- Pure ACKs werden ignoriert, da kein Payload enthalten ist

Gruppierung

- Analyse auf bidirektionalen Flows
- Flows werden erkannt durch 5-Tupel
- 5-Tupel ist definiert:
 - source IP
 - source Port
 - destination IP
 - destination Port
 - transport protokol

ГСР

- Flow beginnt erst nach Three-Way-Handshake
 - Kaltstart-Problem
- Pure ACKs werden ignoriert, da kein Payload enthalten ist

Gruppierung

- Analyse auf bidirektionalen Flows
- Flows werden erkannt durch 5-Tupel
- 5-Tupel ist definiert:
 - source IP
 - source Port
 - destination IP
 - destination Port
 - transport protokol

ТСР

- Flow beginnt erst nach Three-Way-Handshake
 - Kaltstart-Problem
- Pure ACKs werden ignoriert, da kein Payload enthalten ist

Gruppierung

- Analyse auf bidirektionalen Flows
- Flows werden erkannt durch 5-Tupel
- 5-Tupel ist definiert:
 - source IP
 - source Port
 - destination IP
 - destination Port
 - transport protokol

ГСР

- Flow beginnt erst nach Three-Way-Handshake
 - Kaltstart-Problem
- Pure ACKs werden ignoriert, da kein Payload enthalten ist

Gruppierung

- Analyse auf bidirektionalen Flows
- Flows werden erkannt durch 5-Tupel
- 5-Tupel ist definiert:
 - source IP
 - source Port
 - destination IP
 - destination Port
 - transport protokol

TCP

- Flow beginnt erst nach Three-Way-Handshake
 - Kaltstart-Problem
- Pure ACKs werden ignoriert, da kein Payload enthalten ist

Statistical Protocol IDentification

Operation

Identifizierung

Operation: Kullback-Leibler Divergenz

Die KL-Divergenz – auch relative Entropie – ist ein Maß für die Unterschiedlichkeit zweier Wahrscheinlichkeitsverteilungen.

$$D(P||Q) = KL(P, Q) = \sum_{x \in X} P(x) \log_2 \frac{P(x)}{Q(x)}$$

Eigenschaften

- P = trainierte Flows
- Q = vorbeifließende Flows
- nicht symmetrisch: $KL(P, Q) \neq KL(Q, P)$
- Wenn P = Q, dann gilt D(P||Q) = 0, ansonsten D(P||Q) > 0

Operation

Gesetz der großen Zahlen

Die relative Häufigkeit eines zufälligen Ereignisses weicht für immer längere Versuchsserien beliebig von einem festen Grenzwert ab.

$$h_n(E) \rightarrow P(E)$$

└- Implementierung

Implementierungen

- PoC in C# von Erik Hjelmvik mit über 30 Messverfahren (http://sourceforge.net/apps/mediawiki/spid/)
- Fork in C++ mit libPcap f
 ür Tests auf SoHo Ger
 äten
- neue Leistungsmerkmale:
 - Unterstützung des UDP Transport-Protokolls
 Echtzeit-Erkennung (live-capturing)
 optimierte Datenbank
 - ausgewählte Messverfahren

Git Repository

git clone git@github.com:cit/Spid.git

- PoC in C# von Erik Hjelmvik mit über 30 Messverfahren (http://sourceforge.net/apps/mediawiki/spid/)
- Fork in C++ mit libPcap für Tests auf SoHo Geräten
- neue Leistungsmerkmale:

Git Repository

git clone git@github.com:cit/Spid.git

- PoC in C# von Erik Hjelmvik mit über 30 Messverfahren (http://sourceforge.net/apps/mediawiki/spid/)
- Fork in C++ mit libPcap für Tests auf SoHo Geräten
- neue Leistungsmerkmale:
 - Unterstützung des UDP Transport-Protokolls
 - Echtzeit-Erkennung (live-capturing)
 - optimierte Datenbank
 - ausgewählte Messverfahren

Git Repository

git clone git@github.com:cit/Spid.git

- PoC in C# von Erik Hjelmvik mit über 30 Messverfahren (http://sourceforge.net/apps/mediawiki/spid/)
- Fork in C++ mit libPcap für Tests auf SoHo Geräten
- neue Leistungsmerkmale:
 - Unterstützung des UDP Transport-Protokolls
 - Echtzeit-Erkennung (live-capturing)
 - optimierte Datenbank
 - ausgewählte Messverfahren

Git Repository

git clone git@github.com:cit/Spid.git

- PoC in C# von Erik Hjelmvik mit über 30 Messverfahren (http://sourceforge.net/apps/mediawiki/spid/)
- Fork in C++ mit libPcap für Tests auf SoHo Geräten
- neue Leistungsmerkmale:
 - Unterstützung des UDP Transport-Protokolls
 - Echtzeit-Erkennung (live-capturing)
 - optimierte Datenbank
 - ausgewählte Messverfahren

Git Repository

git clone git@github.com:cit/Spid.git

- PoC in C# von Erik Hjelmvik mit über 30 Messverfahren (http://sourceforge.net/apps/mediawiki/spid/)
- Fork in C++ mit libPcap für Tests auf SoHo Geräten
- neue Leistungsmerkmale:
 - Unterstützung des UDP Transport-Protokolls
 - Echtzeit-Erkennung (live-capturing)
 - optimierte Datenbank
 - ausgewählte Messverfahren

Git Repository

git clone git@github.com:cit/Spid.git

- PoC in C# von Erik Hjelmvik mit über 30 Messverfahren (http://sourceforge.net/apps/mediawiki/spid/)
- Fork in C++ mit libPcap für Tests auf SoHo Geräten
- neue Leistungsmerkmale:
 - Unterstützung des UDP Transport-Protokolls
 - Echtzeit-Erkennung (live-capturing)
 - optimierte Datenbank
 - ausgewählte Messverfahren

Git Repository

git clone git@github.com:cit/Spid.git

☐ Implementierung

Implementierungen

- PoC in C# von Erik Hjelmvik mit über 30 Messverfahren (http://sourceforge.net/apps/mediawiki/spid/)
- Fork in C++ mit libPcap für Tests auf SoHo Geräten
- neue Leistungsmerkmale:
 - Unterstützung des UDP Transport-Protokolls
 - Echtzeit-Erkennung (live-capturing)
 - optimierte Datenbank
 - ausgewählte Messverfahren

Git Repository

git clone git@github.com:cit/Spid.git

- Byte-Frequenz
- Anzahl der Richtungswechsel
- Datenmenge pro Richtung
- Hashfunktion über die ersten 4 Bytes
- Aktion und Reaktion
- Entropie
- Periodizität von Byte-Paaren
- Similarität der ersten drei Bytes
- Unicode-Frequenz
- Bit-Frequenz
- Payload-Größe des ersten Pakets

Statistical Protocol IDentification

Messverfahren

Messverfahren

- Byte-Frequenz
- Anzahl der Richtungswechsel
- Datenmenge pro Richtung
- Hashfunktion über die ersten 4 Bytes
- Aktion und Reaktion
- Entropie
- Periodizität von Byte-Paaren
- Similarität der ersten drei Bytes
- Unicode-Frequenz
- Bit-Frequenz
- Payload-Größe des ersten Pakets

Messverfahren: Byte-Frequenz

- auch Häufigkeitsanalyse genannt
- operiert auf dem ersten TCP-Paket in jede Richtung
- zählt die relative Häufigkeit eines Bytes in Bezug auf seine Größe

Beispiel

```
HTTP
```

```
47 45 54 20 2F 66 6F 6F G E T / f o o 48 54 54 50 2F 31 2E 31 H T T P / 1 1
```

Messverfahren: Byte-Frequenz

- auch Häufigkeitsanalyse genannt
- operiert auf dem ersten TCP-Paket in jede Richtung
- zählt die relative Häufigkeit eines Bytes in Bezug auf seine Größe

Beispiel

```
47 45 54 20 2F 66 6F 6F G E T / f o o
```

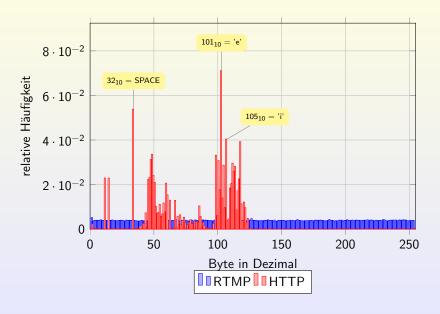
- Statistical Protocol IDentification
 - └─ Messverfahren

Messverfahren: Byte-Frequenz

- auch Häufigkeitsanalyse genannt
- operiert auf dem ersten TCP-Paket in jede Richtung
- zählt die relative Häufigkeit eines Bytes in Bezug auf seine Größe

Beispiel

```
47 45 54 20 2F 66 6F 6F G E T / f o o
48 54 54 50 2F 31 2E 31 H T T P / 1 . 1
```


- Statistical Protocol IDentification
 - └ Messverfahren

Messverfahren: Byte-Frequenz

- auch Häufigkeitsanalyse genannt
- operiert auf dem ersten TCP-Paket in jede Richtung
- zählt die relative Häufigkeit eines Bytes in Bezug auf seine Größe

Beispiel

Messverfahren: Byte-Frequenz

└ Messverfahren

Messverfahren: Richtungswechsel

- misst die Anzahl der Richtungswechsel
- bei n Pakten sind (n-1) Richtungswechsel möglich
- Differenzierung zwischen:
 - häufige Richtungswechsel → Interaktive Protokolle
 seltene Richtungswechsel → Streaming Protokolle

└ Messverfahren

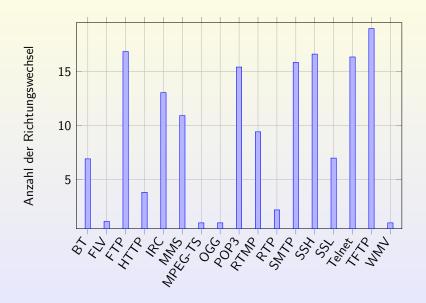
Messverfahren: Richtungswechsel

- misst die Anzahl der Richtungswechsel
- bei n Pakten sind (n-1) Richtungswechsel möglich
- Differenzierung zwischen:

└ Messverfahren

Messverfahren: Richtungswechsel

- misst die Anzahl der Richtungswechsel
- bei n Pakten sind (n-1) Richtungswechsel möglich
- Differenzierung zwischen:
 - häufige Richtungswechsel → Interaktive Protokolle
 - ullet seltene Richtungswechsel o Streaming Protokolle


Messverfahren: Richtungswechsel

- misst die Anzahl der Richtungswechsel
- bei n Pakten sind (n-1) Richtungswechsel möglich
- Differenzierung zwischen:
 - häufige Richtungswechsel → Interaktive Protokolle
 - ullet seltene Richtungswechsel o Streaming Protokolle

Messverfahren: Richtungswechsel

- misst die Anzahl der Richtungswechsel
- bei n Pakten sind (n-1) Richtungswechsel möglich
- Differenzierung zwischen:
 - ullet häufige Richtungswechsel o Interaktive Protokolle
 - seltene Richtungswechsel → Streaming Protokolle

Messverfahren: Richtungswechsel

Messverfahren: Datenmenge pro Richtung

- misst die Datenmenge in jede Richtung
- Verfahren setzt Up- und Download in prozentuales Verhältnis
- Differenzierung zwischen:

Up/Down ausbalaciert

fast nur Download

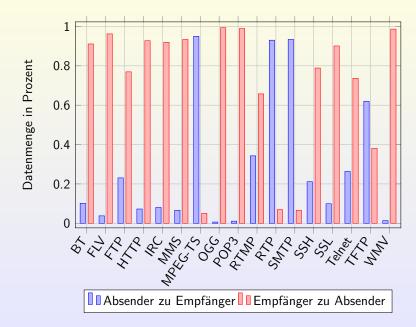
a fast nur Unload

o fast fluir Opioau

└ Messverfahren

Messverfahren: Datenmenge pro Richtung

- misst die Datenmenge in jede Richtung
- Verfahren setzt Up- und Download in prozentuales Verhältnis
- Differenzierung zwischen:


Messverfahren: Datenmenge pro Richtung

- misst die Datenmenge in jede Richtung
- Verfahren setzt Up- und Download in prozentuales Verhältnis
- Differenzierung zwischen:
 - Up/Down ausbalaciert
 - fast nur Download
 - fast nur Upload

- misst die Datenmenge in jede Richtung
- Verfahren setzt Up- und Download in prozentuales Verhältnis
- Differenzierung zwischen:
 - Up/Down ausbalaciert
 - fast nur Download
 - fast nur Upload

- misst die Datenmenge in jede Richtung
- Verfahren setzt Up- und Download in prozentuales Verhältnis
- Differenzierung zwischen:
 - Up/Down ausbalaciert
 - fast nur Download
 - fast nur Upload

- misst die Datenmenge in jede Richtung
- Verfahren setzt Up- und Download in prozentuales Verhältnis
- Differenzierung zwischen:
 - Up/Down ausbalaciert
 - fast nur Download
 - fast nur Upload

└ Messverfahren

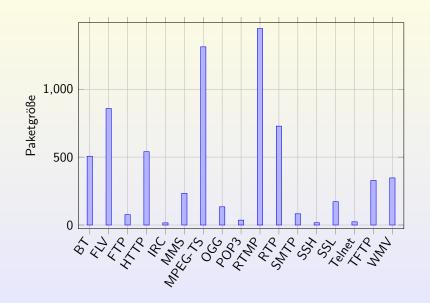
Messverfahren: Paketgröße

- misst die Paketgröße des ersten Pakets
- Informationen über die Initialisierung
- Oft gibt es eine minimale und maximale Paketgröße

Florian Adamsky 30 / 48

Messverfahren: Paketgröße

- misst die Paketgröße des ersten Pakets
- Informationen über die Initialisierung
- Oft gibt es eine minimale und maximale Paketgröße


Florian Adamsky 30 / 48

Messverfahren: Paketgröße

- misst die Paketgröße des ersten Pakets
- Informationen über die Initialisierung
- Oft gibt es eine minimale und maximale Paketgröße

Florian Adamsky 30 / 48

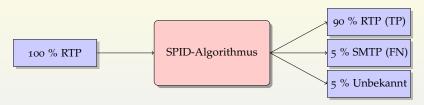
Messverfahren: Paketgröße

Restliche Messverfahren

- Byte-Frequenz
- Anzahl der Richtungswechsel
- Datenmenge pro Richtung
- Hashfunktion über die ersten 4 Bytes
- Aktion und Reaktion
- Entropie
- Periodizität von Byte-Paaren
- Similarität der ersten drei Bytes
- Unicode-Frequenz
- Bit-Frequenz
- Payload-Größe des ersten Pakets

Restliche Messverfahren

- Byte-Frequenz
- Anzahl der Richtungswechsel
- Datenmenge pro Richtung
- Hashfunktion über die ersten 4 Bytes
- Aktion und Reaktion
- Entropie
- Periodizität von Byte-Paaren
- Similarität der ersten drei Bytes
- Unicode-Frequenz
- Bit-Frequenz
- Payload-Größe des ersten Pakets


Inhaltsverzeichnis

- 1 Einleitung
- 2 Netzwerkprotokoll Identifizierung
 - Definition
 - Techniken
- 3 Statistical Protocol IDentification
 - Algorithmus Details
 - Gruppierung in Flows
 - Operation
 - Implementierung
 - Messverfahren
- 4 Evaluierung
 - Ergebnisse
- 5 Ausblick: Protokoll-Obfuskation

Florian Adamsky 33 / 48

Kontigenztabelle tatsächlich positiv tatsächlich negativ positiv vorhergesagt richtig positiv (TP) falsch positiv (FP) negativ vorhergesagt falsch negativ (FN) richtig negativ (TN)

tsächlich positiv	tatsächlich negativ
	tatsacinicii negativ
htig positiv (TP)	falsch positiv (FP)
sch negativ (FN)	richtig negativ (TN)
ł	ntig positiv (TP)

Trefferquote

ist die Wahrscheinlichkeit mit der ein Protokoll richtig erkannt wird

$$\text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}}$$

Genauigkeit

ist die Wahrscheinlichkeit der Treffermenge

$$Precision = \frac{TP}{TP + FP}$$

F-Maß

kombiniert Genauigkeit und Trefferquote

$$F - Ma\beta = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

Trefferquote

ist die Wahrscheinlichkeit mit der ein Protokoll richtig erkannt wird

$$Recall = \frac{TP}{TP + FN}$$

Genauigkeit

ist die Wahrscheinlichkeit der Treffermenge

$$Precision = \frac{TP}{TP + FP}$$

F-Maß

kombiniert Genauigkeit und Trefferquote

$$F - Ma\beta = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

Trefferquote

ist die Wahrscheinlichkeit mit der ein Protokoll richtig erkannt wird

$$Recall = \frac{TP}{TP + FN}$$

Genauigkeit

ist die Wahrscheinlichkeit der Treffermenge

$$Precision = \frac{TP}{TP + FP}$$

F-Maß

kombiniert Genauigkeit und Trefferquote

$$F - MaB = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

Evaluierung

Datenbestand

- Beschaffung aus freien Quellen
 - http://www.openpacket.org
 - http://www.pcapr.net
 - http://www.ll.mit.edu/mission/communications/ist/ corpora/ideval/data/1999data.html
- Erstellung eigener Mitschnitte
- soviel wie moglich automatisiert mit Perl Scripte
- 3135 Flows für 1/ Protokolle die 1.5 GB ergeben
- Ich bin dankbar für Hinweise auf Datenbestände Kontakt

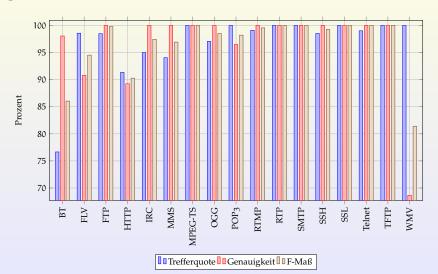
- Beschaffung aus freien Quellen
 - http://www.openpacket.org
 - http://www.pcapr.net
 - http://www.ll.mit.edu/mission/communications/ist/ corpora/ideval/data/1999data.html
- Erstellung eigener Mitschnitte
- 3135 Flows f
 ür 17 Protokolle die 1.5 GB ergeben
- Ich bin dankbar für Hinweise auf Datenbestände Kontakt

- Beschaffung aus freien Quellen
 - http://www.openpacket.org
 - http://www.pcapr.net
 - http://www.ll.mit.edu/mission/communications/ist/ corpora/ideval/data/1999data.html
- Erstellung eigener Mitschnitte
- 3135 Flows für 17 Protokolle die 1.5 GB ergeben
- Ich bin dankbar für Hinweise auf Datenbestände Kontakt

- Beschaffung aus freien Quellen
 - http://www.openpacket.org
 - http://www.pcapr.net
 - http://www.ll.mit.edu/mission/communications/ist/ corpora/ideval/data/1999data.html
- Erstellung eigener Mitschnitte
- 3135 Flows f
 ür 17 Protokolle die 1.5 GB ergeben
- Ich bin dankbar für Hinweise auf Datenbestände

- Beschaffung aus freien Quellen
 - http://www.openpacket.org
 - http://www.pcapr.net
 - http://www.ll.mit.edu/mission/communications/ist/ corpora/ideval/data/1999data.html
- Erstellung eigener Mitschnitte
 - soviel wie möglich automatisiert mit Perl Scripten
- 3135 Flows f
 ür 17 Protokolle die 1.5 GB ergeben
- Ich bin dankbar für Hinweise auf Datenbestände Kontakt

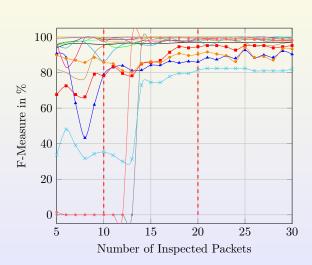
- Beschaffung aus freien Quellen
 - http://www.openpacket.org
 - http://www.pcapr.net
 - http://www.ll.mit.edu/mission/communications/ist/ corpora/ideval/data/1999data.html
- Erstellung eigener Mitschnitte
 - soviel wie möglich automatisiert mit Perl Scripten
- 3135 Flows für 17 Protokolle die 1.5 GB ergeben
- Ich bin dankbar für Hinweise auf Datenbestände Kontakt


- Beschaffung aus freien Quellen
 - http://www.openpacket.org
 - http://www.pcapr.net
 - http://www.ll.mit.edu/mission/communications/ist/ corpora/ideval/data/1999data.html
- Erstellung eigener Mitschnitte
 - soviel wie möglich automatisiert mit Perl Scripten
- 3135 Flows für 17 Protokolle die 1.5 GB ergeben
- Ich bin dankbar für Hinweise auf Datenbestände

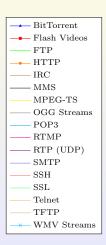
- Beschaffung aus freien Quellen
 - http://www.openpacket.org
 - http://www.pcapr.net
 - http://www.ll.mit.edu/mission/communications/ist/ corpora/ideval/data/1999data.html
- Erstellung eigener Mitschnitte
 - soviel wie möglich automatisiert mit Perl Scripten
- 3135 Flows für 17 Protokolle die 1.5 GB ergeben
- Ich bin dankbar für Hinweise auf Datenbestände Kontakt

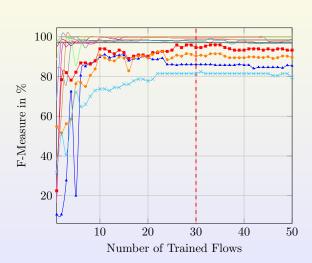
Evaluierung

Ergebnisse

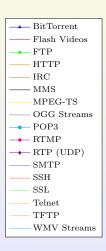

Ergebnisse

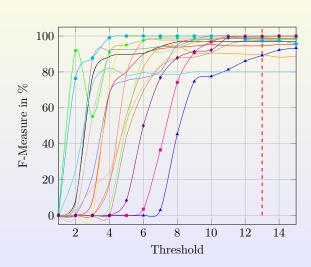
Evaluierung
LErgebnisse


Ergebnisse




```
Evaluierung
LErgebnisse
```


Ergebnisse




```
Evaluierung
LErgebnisse
```

Ergebnisse

Evaluierung
Ergebnisse

Geschwindigkeitstest

Linksys WRT54GL

• OS: OpenWRT 8.09 Kamikaze

• Kernel: 2.4.35.4

CPU: 200 MHz MIPSel

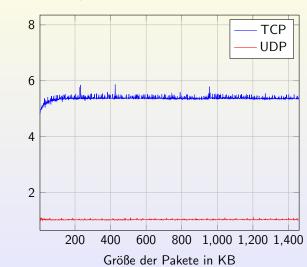
• RAM: 16 MiB

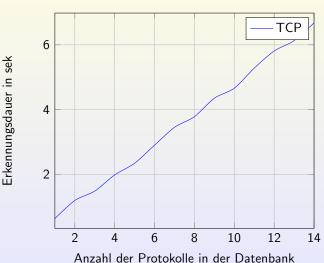
Dlink DIR 825

OS: OpenWRT Backfire

• Kernel: 2.6.32-16

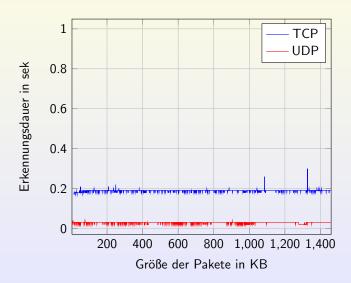
CPU: 680 MHz MIPS


RAM: 64 MiB



Linksys WRT54GL 1/2

Erkennungsdauer in sek



Linksys WRT54GL 2/2

43 / 48 Florian Adamsky

Dlink DIR 825

Inhaltsverzeichnis

- 1 Einleitung
- 2 Netzwerkprotokoll Identifizierung
 - Definition
 - Techniken
- Statistical Protocol IDentification
 - Algorithmus Details
 - Gruppierung in Flows
 - Operation
 - Implementierung
 - Messverfahren
- 4 Evaluierung
 - Ergebnisse
- 5 Ausblick: Protokoll-Obfuskation

Definition

Protokoll-Obfuskation hat das Ziel das Protkoll zu verschleiern und so eine Identifizierung zu vermeiden.

Arten

- Payload Obfuskation
 - Verschlüsselung (z.B. VPN)
- Flow-Level Obfuskation

Protokolle

- BitTorrent (MSE Message Stream Encryption)
- eMule
- Skype

Definition

Protokoll-Obfuskation hat das Ziel das Protkoll zu verschleiern und so eine Identifizierung zu vermeiden.

Arten

- Payload Obfuskation
 - Verschlüsselung (z.B. VPN)
- Flow-Level Obfuskation

Protokolle

- BitTorrent (MSE Message Stream Encryption)
- eMule
- Skype

Definition

Protokoll-Obfuskation hat das Ziel das Protkoll zu verschleiern und so eine Identifizierung zu vermeiden.

Arten

- Payload Obfuskation
 - Verschlüsselung (z.B. VPN)
- Flow-Level Obfuskation

Protokolle

- BitTorrent (MSE Message Stream Encryption)
- eMule
- Skype

0

Definition

Protokoll-Obfuskation hat das Ziel das Protkoll zu verschleiern und so eine Identifizierung zu vermeiden.

Arten

- Payload Obfuskation
 - Verschlüsselung (z.B. VPN)
- Flow-Level Obfuskation

Protokolle

- BitTorrent (MSE Message Stream Encryption)
- eMule
- Skype

. . . .

Definition

Protokoll-Obfuskation hat das Ziel das Protkoll zu verschleiern und so eine Identifizierung zu vermeiden.

Arten

- Payload Obfuskation
 - Verschlüsselung (z.B. VPN)
- Flow-Level Obfuskation

Protokolle

- BitTorrent (MSE Message Stream Encryption)
- eMule
- Skype

• . . .

Definition

Protokoll-Obfuskation hat das Ziel das Protkoll zu verschleiern und so eine Identifizierung zu vermeiden.

Arten

- Payload Obfuskation
 - Verschlüsselung (z.B. VPN)
- Flow-Level Obfuskation

Protokolle

- BitTorrent (MSE Message Stream Encryption)
- eMule
- Skype

Definition

Protokoll-Obfuskation hat das Ziel das Protkoll zu verschleiern und so eine Identifizierung zu vermeiden.

Arten

- Payload Obfuskation
 - Verschlüsselung (z.B. VPN)
- Flow-Level Obfuskation

Protokolle

- BitTorrent (MSE Message Stream Encryption)
- eMule
- Skype

- -

- nur Payload Verschlüsselung reicht nicht
- Werte die zufälliger sein sollten:
 - Senderichtung der Pakete
 - Inter-Arrival Time
 - Paketøröße
- Alternativen
 - Protokolle in andere Protokolle verstecken

- nur Payload Verschlüsselung reicht nicht
- Werte die zufälliger sein sollten:
 - Senderichtung der Pakete
 - Inter-Arrival Time
 - Paketgröße
- Alternativen

- nur Payload Verschlüsselung reicht nicht
- Werte die zufälliger sein sollten:
 - Senderichtung der Pakete
 - Inter-Arrival Time
 - Paketgröße
- Alternativen

- nur Payload Verschlüsselung reicht nicht
- Werte die zufälliger sein sollten:
 - Senderichtung der Pakete
 - Inter-Arrival Time
 - Paketgröße
- Alternativen

- nur Payload Verschlüsselung reicht nicht
- Werte die zufälliger sein sollten:
 - Senderichtung der Pakete
 - Inter-Arrival Time
 - Paketgröße
- Alternativen

- nur Payload Verschlüsselung reicht nicht
- Werte die zufälliger sein sollten:
 - Senderichtung der Pakete
 - Inter-Arrival Time
 - Paketgröße
- Alternativen
 - Protokolle in andere Protokolle verstecken

- nur Payload Verschlüsselung reicht nicht
- Werte die zufälliger sein sollten:
 - Senderichtung der Pakete
 - Inter-Arrival Time
 - Paketgröße
- Alternativen
 - Protokolle in andere Protokolle verstecken

Ausblick: Protokoll-Obfuskation

Ende

Danke für eure Aufmerksamkeit! © Gibt es noch Fragen?

Kontakt

E-Mail: florian-27c3@adamsky.it

Twitter: @c1t