Ten Years of Rowhammer

A Retrospect (and Path to the Future)

Martin Heckel^{1,2} (@lunkw1ll) Daniel Gruss¹ (@lavados) Florian Adamsky² (@c1t)

¹ Graz University of Technology
 ² Hof University of Applied Sciences

Origins and Root Cause

System DRAM

Channel

Structure within a DRAM bank

1. Capacitor loses its voltage over time

- 1. Capacitor loses its voltage over time
 - Cells must be refreshed regularly (refresh rate)

- 1. Capacitor loses its voltage over time
 - Cells must be refreshed regularly (refresh rate)
 - Cells are normally refreshed every 64 ms

- 1. Capacitor loses its voltage over time
 - Cells must be refreshed regularly (refresh rate)
 - Cells are normally refreshed every 64 ms
- 2. When reading a row, we destroy the data in this row

- 1. Capacitor loses its voltage over time
 - Cells must be refreshed regularly (refresh rate)
 - Cells are normally refreshed every 64 ms
- 2. When reading a row, we destroy the data in this row
 - Intermediate memory in the row buffer

Historical Overview

1971

Historical Overview

Historical Overview

How Rowhammer Works

• Memory rows are disturbed by frequent accesses

- Memory rows are disturbed by frequent accesses
- Results in bit flips in adjacent rows

- Memory rows are disturbed by frequent accesses
- Results in bit flips in adjacent rows
- Exploited through clever hammering techniques

hammertime:

mov (Row 0), %eax
mov (Row 2), %ebx
clflush (Row 0)
clflush (Row 2)
jmp hammertime

Simple Example of Rowhammer

hammertime:

mov	(Row	0),	%eax
mov	(Row	2),	%ebx
clf]	lush	(Row	0)
clf]	lush	(Row	2)
jmp hammertime			

Simple Example of Rowhammer

Simple Example of Rowhammer

hammertime:

mov	(Row	0),	%eax
mov	(Row	2),	%ebx
clf]	lush	(Row	0)
clf]	lush	(Row	2)
jmp	hamm	erti	me

Simple Example of Rowhammer

Simple Example of Rowhammer

We can touch this!

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

hammertime:

mov (Row 0), %eax
mov (Row 2), %ebx
clflush (Row 0)
clflush (Row 2)
jmp hammertime

Double-Sided

Double-Sided

One-Location

Double-Sided

One-Location

... and several more (e.g., many-sided hammering)

OxcOffee

Addressing Functions

Addressing Functions

But how can we exploit it?

Reminder: Page Table Entries (simplified)

Page Table Entries

Reminder: Page Table Entries (simplified)

Page Table Entries

Reminder: Page Table Entries (simplified)

Page Table Entries

for (int i = 0; i < N; i++)
mmap(NULL, FSIZE, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);</pre>

2015: Rowhammer.js

• double-sided hammer

- double-sided hammer
- via JavaScript

- double-sided hammer
- via JavaScript
- without clflush

Test

320:12 330: 9 340:1 350:0 360-1 370:2 380-199 390: 76 400:72 410: 231 420: 572 1250

ROOT privileges for web apps!

Q

heise+ IT Wissen Mobiles Security Developer Entertainment Netzpolitik Wirtschaft Journal Newsticker Foren

heise online > IT > Fake Screenshots die jeder selbst einfach anfertigen kann

Drei Milliarden Rechner durch Rowhammer-Angriffe kompromittiert

Hacker haben mittels Rowhammer-Angriffen aus JavaScript offenbar 3 Milliarden Rechner gehackt. Sowohl die USA als auch die EU haben den Notstand ausgerufen.

🖶 Artikel verschenken 📧

Area P

	Newsticker Foren
heise online $> 1T >$ Fake Screenshots die jeder selbst einfach anfertigen kann	
Drei Milliarden Rechner durch Rowhammer-	
Angriffe kompromittiert	
Hacker haben mittels Rowhammer-Angriffen aus JavaScript Granbar 3 Million Hen Rechner gehackt. Sowohl die USA als auch die EU her schen Notstand ausgerufen.	
🗄 Artikel verschenken 💵	
La	

Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

 \wedge

Scientific Papers about Rowhammer per Year

Scientific Papers about Rowhammer per Year

Too many works to discuss...

• Reliability

- Reliability
- Exploits

• Rowhammer enables privilege escalation attacks

- Rowhammer enables privilege escalation attacks
- Bypassing memory isolation barriers

- Rowhammer enables privilege escalation attacks
- Bypassing memory isolation barriers
- Challenges:

- Rowhammer enables privilege escalation attacks
- Bypassing memory isolation barriers
- Challenges:

- Rowhammer enables privilege escalation attacks
- Bypassing memory isolation barriers
- Challenges:
 - High-Resolution Timers (for the side channel / reverse-engineering)

- Rowhammer enables privilege escalation attacks
- Bypassing memory isolation barriers
- Challenges:
 - High-Resolution Timers (for the side channel / reverse-engineering)
 - Differences between environments

- Rowhammer enables privilege escalation attacks
- Bypassing memory isolation barriers
- Challenges:
 - High-Resolution Timers (for the side channel / reverse-engineering)
 - Differences between environments
 - Right amount of bit flips in the right locations!

- Rowhammer enables privilege escalation attacks
- Bypassing memory isolation barriers
- Challenges:
 - High-Resolution Timers (for the side channel / reverse-engineering)
 - Differences between environments
 - Right amount of bit flips in the right locations!
 - Flips reproducible (!?) \rightarrow great for attacks

- Rowhammer enables privilege escalation attacks
- Bypassing memory isolation barriers
- Challenges:
 - High-Resolution Timers (for the side channel / reverse-engineering)
 - Differences between environments
 - Right amount of bit flips in the right locations!
 - Flips reproducible (!?) \rightarrow great for attacks

- Rowhammer enables privilege escalation attacks
- Bypassing memory isolation barriers
- Challenges:
 - High-Resolution Timers (for the side channel / reverse-engineering)
 - Differences between environments
 - Right amount of bit flips in the right locations!
 - Flips reproducible (!?) \rightarrow great for attacks (and PUFs...)

A Cat and Mouse Game

• Usually systems have a refresh rate of 64 ms

• Usually systems have a refresh rate of 64 ms

- Usually systems have a refresh rate of 64 ms
 - Can be increased by 2-4 times

- Usually systems have a refresh rate of 64 ms
 - Can be increased by 2-4 times
- More power is used

- Usually systems have a refresh rate of 64 ms
 - Can be increased by 2-4 times
- More power is used
- Will delay the requested data \rightarrow less performance

- Usually systems have a refresh rate of 64 ms
 - Can be increased by 2-4 times
- More power is used
- Will delay the requested data \rightarrow less performance
- Will not prevent Rowhammer

Cat and Mouse Game

Not just opcodes \rightarrow 29 exploitable bit flips in sudo

• ECC stores extra parity bits next to the data

- ECC stores extra parity bits next to the data
- but it can be bypassed

- ECC stores extra parity bits next to the data
- but it can be bypassed
- reverse-engineering + multiple bit flips in the right locations \rightarrow ECC bypassed

Cat and Mouse Game

Cat and Mouse Game

Near Aggressor Victim Near Aggressor Dummy Dummy

Near Aggressor
Victim
Near Aggressor
Dummy
Dummy

Near Aggressor
Victim
Near Aggressor
Dummy
Dummy

Near Aggressor
Victim
Near Aggressor
Dummy
Dummy

Near Aggressor
Victim
Near Aggressor
Dummy
Dummy

Near Aggressor
Victim
Near Aggressor
Dummy
Dummy

Near Aggressor
Victim
Near Aggressor
Dummy
Dummy

Near Aggressor
Victim
Near Aggressor
Dummy
Dummy

Near Aggressor
Victim
Near Aggressor
Dummy
Dummy

Near Aggressor
Victim
Near Aggressor
Dummy
Dummy

Near Aggressor
Victim
Near Aggressor
Dummy
Dummy

Near Aggressor
Victim
Near Aggressor
Dummy
Dummy

Near Aggressor
Victim
Near Aggressor
Dummy
Dummy
Near Aggressor Victim Near Aggressor Dummy Dummy

Cat and Mouse Game

Cat and Mouse Game

• Non-uniform Rowhammer Fuzzer

- Non-uniform Rowhammer Fuzzer
- Randomizes three characteristics:

- Non-uniform Rowhammer Fuzzer
- Randomizes three characteristics:

Frequency: How often the aggressor row is accessed

- Non-uniform Rowhammer Fuzzer
- Randomizes three characteristics:

Frequency: How often the aggressor row is accessed Phase: First hammer after start of a pattern

- Non-uniform Rowhammer Fuzzer
- Randomizes three characteristics:

Frequency: How often the aggressor row is accessed Phase: First hammer after start of a pattern Amplitude: How many consecutive hammers

- Non-uniform Rowhammer Fuzzer
- Randomizes three characteristics:

Frequency: How often the aggressor row is accessed Phase: First hammer after start of a pattern Amplitude: How many consecutive hammers

• Found bit flips in all 41 DIMMs tested

• Each row has its own activation counter

- Each row has its own activation counter
- Guarantee that every victim row is refreshed in a specific time frame

Cat and Mouse Game

• First Rowhammer bit flips on AMD

- First Rowhammer bit flips on AMD
- Different DRAM mapping, better refresh alignment

- First Rowhammer bit flips on AMD
- Different DRAM mapping, better refresh alignment
- First bit flips on DDR5

- First Rowhammer bit flips on AMD
- Different DRAM mapping, better refresh alignment
- First bit flips on DDR5 on 1 DIMM

Comprehensive Review of Rowhammer Papers

Comprehensive Review of Rowhammer Papers

Paper	Pattern	Memory Type	Environment	Test Setup	Focus	Sample size	Flips observed on	Year
A New Approach for Rowhammer Attacks	7	7	Unspecified	Unspecified	Exploitation	2	7	2016
Dedup Est Machina: Memory Deduplication as an Advanced Exploitation Vector	Double-Sided	DDR3	Unspecified	1 Lab System	Exploitation	1 DIMM	1 DIMM	2016
Drammer: Deterministic Rowhammer Attacks on Mobile Platforms	Double-Sided	LPDDR2	Umpecified	1 Smartphone	Exploitation, Bit Flips	1 Smartphone	1 Smartphone	2016
Drammer: Deterministic Rowhammer Attacks on Mobile Platforms	Double-Sided	LPDDR3	Umpecified	26 Smartphones	Exploitation, Bit Flips	26 Smartphones	17 Smartphones	2016
Drammer: Deterministic Rowhammer Attacks on Mobile Platforms	Double-Sided	LPDDR4	Umpecified	1 Smartphone	Exploitation, Bit Flips	1 Smartphone	0 Smartphones	2016
Flip Feng Shui: Hammering a Needle in the Software Stack	Double-Sided	DDR3	Umpecified	1 Lab System	Exploitation	1 DIMM	1 DIMM	2016
One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks and Privilege Escalation	Single-Sided, Double-Sided	DDR3	Unspecified	5 Lab Systems	Exploitation, Bit Flips	5 DIMMs	4 DIMMs (experiment only done on 4)	2016
One Bit Flips. One Cloud Flops: Cross-VM Box Hammer Attacks and Privilege Escalation	Single-Sided, Double-Sided	DDR4	Unspecified	1 Lab System	Exploitation, Bit Flips	1 DIMM	0 DIMMs (experiment not done on DDR4)	2016
Rowhammer.is: A Remote Software-Induced Fault Attack in JavaScript	Double-Sided	DDR3	Umpecified	2 Lab Systems	Bit Flips	6 DIMMs	5 DIMMs	2016
Rowhammer.is: A Remote Software-Induced Fault Attack in JavaScript	Double-Sided	DDR4	tREFI	2 Lab Systems	Bit Flips	4 DIMMs	2 DIMMs	2016
SGX-Bomb: Locking Down the Processor via Rowhammer Attack	Double-Sided	DDR4	Unsecified	1 Lab System	Exploitation, Bit Flips	1 DIMM	1 DIMM	2017
When Good Protections Go Bad: Exploiting Anti-DoS Measures to Accelerate Rowhammer Attacks	Single-Sided, Double-Sided	DDR4	Unspecified	1 Lab System	Bit Flips	4 DIMMs	3 DIMMs	2017
Another Flin in the Well of Brochemorer Defenses	One-Location	0.083	Unperified	2.1 ab Soutann	Evolutation Bit Film	4 DIMM.	4 DIMM+	2018
Another Flip in the Wall of Brochammer Defeman	One-Location	DDRA	Unpecified	1 Lab System	Explaitation Bit Fire	2 DIMM.	2 DIMM.	2018
Defeating Software Mitigation Aminat Brochammer: A Social Precision Hammer	Single-Sided Druble-Sided Amplified	0083	Unapacified	2 Lab Systems	Evaluitation	33 Memory Satura?	14 Memory Satura?	2018
Methaning Junivare Integrations Against Howards Ficely, showed Methaning Resolution	Davida Sided	DDRJ	Unspecified	2 Law Systems	Explaination Ris Eliza	1 Datas	and mannary paragent	2018
Netheman: Inducing Rookeman Faults through Network Requests	One-Location	100082	Unpecified	1 Smartohone	Exploitation, Bit Fire	1 Smartohone	1 Smartohone	2018
Throubarrower, Bracharrower Attacks over the Network and Defenses	Double Sided	0.083	Unpecified	21 ab Scatama	Bit Fline	4 DIMM+	4 DIMM.	2018
Trianarina Resolutionari Hardonea Facilita en ARM: A Basiait	Double Sided	LEDDR3	Unpecified	1 Single Board Computer	Bit Fline	1 Single Board	1 Single Board	2018
Exclusion Control of the Effectioneers of ECC Mercers, Andrew Restorement Materia	Darable Elded	2	Unperident	1 Suger Deard Company	Evaluation	1 July costs	1 sector counts	225.0
Exploring Contenting Collect On the Enterthemator PECC Miningry Against Howardship Mitable	Dauble Sided	0083	Unpresident	1 Lab Barton	Ris Direc	16 DOMAN	12 00404	2010
Proposit Rowanserier: Suppressing Onwarrow the Press on Rowinserier Persons	Early Educed Decides Educed	DDR3	Unpressid	1 Lab System	Dis Pips	2 Dilland	a Dilata-	2019
TODowney, Evolution the Mean Eider of Terret Rev. Referab	Single-States, Louise-States	DDR3	Unprovided	A Law System	Dis Pips	42 000404	2 Dilette	2020
Trinspase Exposing the many sites of Target now Perrow	Hearry-Sedea	L/L/04	Competition	A Law System	Dis Figs	42 1709000	13 Davina	2929
THRespan: Exploiting the Many Sides of Target Now Network	Many-Sided	LPDDR4X	Umpeched	13 Mobile Devices	Bit Pips	13 Mobile Devices	5 Modele Devices	2020
SMASH: Synchronized Many-sided Rowhammer Attacks from JaxaScript	Many-Sided	DD004	Umpeched	3 Lab Systems	Bit Pips	5 DIMMs	3 - 5 DIMMs (not clarified)	2021
BLACKSMITH: Scalable Rowhammening in the Frequency Domain BLACKSMITH: Scalable Rowhammening in the Evenency Domain	Fuzzed (Blackweith)	DDR4	Umpecified	10 Lab Systems	Dis Figs	40 DEMMs	40 DIMMA	2022
build Davide Memories from the Nex Dev.	Half Devide	DOBA	Unspecified	EDCA	Die Dies	19 Chips	10 Chips	2022
har bases running run to her box over	Phare-Location	L) L) E)	Unspecified	FFGA	Dit Papa	3 LANENAS	2 1410/04	2922
has based in the many ran the real tow over	Phare-Location	LPDDHAA	Unspecified	7 NODELE LIEVIES	Dit Papa	7 MODER LAVACES	5 MODER LAWYOR	2922
Hall-Double: Hammering From the Next Row Over	Plath-Double	DD004	Unspecified	1 Notebook	Bit Phys	1 Notebook	0 Notebooks	2022
Hall-Double: Hammering From the Next Row Over	Half-Double	LPDDR4	Unspecified	2 MiniPCa	Bit Pips	2 MinPCs	0 MinPCs	2022
Spechammer: Combring Spectre and Rowhammer for New Speculative Attacks	Double-Sided	DDec3	Umpeched	1 Lab System	Exploitation, Bit Pilps	3 DIMMs	3 DIMMs	2022
Spechammer: Combining Spectre and Rowhammer for New Speculative Attacks	Many-Sided	DDR4	Umpeched	3 Lab Systems	Exploitation, Bit Pilps	3 DIMMs	3 DIMMs	2022
SpyHammer: Understanding and Exploiting RowHammer Under Fine-Grained Temperature Variations	Single-Sided	DDR4	Temperature	FPGA	Bit Flips	12 DIMMs	12 DIMMs	2022
Understanding RowHarnmer Under Reduced Wordline Voltage: An Experimental Study Using Real DRAM Devices	Double-Sided	DDR4	50C	FPGA	Bit Flips	30 DIMMs (272 Chips)	64 Chips	2022
When Frodo Filps: End-to-End Key Recovery on FrodoKEM via Rowhammer	Double-Sided	DDR3	Umpecified	1 Lab System	Exploitation	2 DIMMs	l = 1 DIMM	2022
A Rowharmer Reproduction Study Using the Blackarshh Fuzzer	Pazzed (Blackamith)	DD864	Umpecified	4 Lab Systems	Bit Flips	10 DIMMa	8 DIMMs	2023
An Experimental Analysis of RowPlammer in HBM2 DRAM Chips	Double-Sided	HBM2	Umpecified	FPGA	Bit flips	1 CNp	1 CNp	2023
RowPress: Amplifying Read Disturbance in Modern DRAM Chips	Single-Sided	DDR4	Temperature	FPGA	Bit Flips	21 DIMMs	21 DIMMs	2023
RowPress: Amplifying Read Disturbance in Modern DRAM Chips	Single-Sided	DDR4	Umpecified	1 Lab System	Bit Flips	1 DIMM	1 DIMM	2023
Presshammer: Rowhammer and Rowpress Without Physical Address Information	Fazzed (Blackamith)	DDR4	Unspecified	Lab Systems	Bit Flips	12 DIMMs	6 DIMMs	2024
Presshammer: Rowhammer and Rowpress Without Physical Address Information	Single-Sided	DDR4	Unspecified	Lab Systems	Bit Flips	12 DIMMs	2 DIMMs	2024
RISC-H: Rowhammer Attacks on RISC-V	Double-Sided	DDR4	23C	1 Lab System (RISC-V)	Bit Flips	1 DIMM	1 DIMM	2024
SledgeHammer: Amplifying Rowhammer via Bank-level Parallelium	Many-Sided	DDR3	Umpecified	1 Lab System	Bit Flips	1 DIMM	? DIMMs	2024
SledgeHammer: Amplifying Rowhammer via Bank-level Parallelism	Many-Sided	DDR4	Umpecified	1 Lab System	Bit Flips	2 DIMMs	2 DIMMs (not clarified)	2024
ZENHAMMER: Rowhammer Attacks on AMD Zen-based Platforms	Fuzzed (Blackamith)	DDR4	Umpecified	3 Lab Systems	Bit Flips	10 DIMMs	8 DIMMs	2024
7ENMANNED, Dechargener Attacks on AMD Zen based Distances	Economic (Disabase inth)	0.085	Descention.	1 Lab Contemp	Dis Diss	10 Dillaber	1 DIMM	2224

Table 1: Overview of Rowhammer Studies

Comprehensive Review of Rowhammer Papers

Table 1: Overview of Rowhammer Studies

Rowhammer Papers: Sample Sizes

So, does it really matter?

• Reliability? Yes, but...

- Reliability? Yes, but...
- Exploits? Yes, but..

- Reliability? Yes, but...
- Exploits? Yes, but..
- Prevalence? Are even that many system affected?

- Reliability? Yes, but...
- Exploits? Yes, but..
- Prevalence? Are even that many system affected?
- ightarrow We don't know!

• Overall 378 DIMMs tested

- Overall 378 DIMMs tested
- Overall 296 DIMMs (78.3%) affected

Rowhammer Prevalence - What We Know

What do we need?

A Large-Scale Prevalence Study

• Real-world conditions on real systems

- Real-world conditions on real systems
- Large-scale prevalence observations

- Real-world conditions on real systems
- Large-scale prevalence observations
- Reproducibility of bit flips

- Real-world conditions on real systems
- Large-scale prevalence observations
- Reproducibility of bit flips (→ are Rowhammer PUFs even practical?)

• Test and identify DRAM address functions

- Test and identify DRAM address functions
 - Drama, DRAMDig, TRRespass RE, Dare (Zenhammer), AMDRE

- Test and identify DRAM address functions
 - Drama, DRAMDig, TRRespass RE, Dare (Zenhammer), AMDRE
- Test Rowhammer patterns and document bit flips

- Test and identify DRAM address functions
 - Drama, DRAMDig, TRRespass RE, Dare (Zenhammer), AMDRE
- Test Rowhammer patterns and document bit flips
 - Blacksmith, TRRespass, RowhammerJs, Rowhammer-Test, FlipFloyd, RowPress, HammerTool

- Test and identify DRAM address functions
 - Drama, DRAMDig, TRRespass RE, Dare (Zenhammer), AMDRE
- Test Rowhammer patterns and document bit flips
 - Blacksmith, TRRespass, RowhammerJs, Rowhammer-Test, FlipFloyd, RowPress, HammerTool
- No attacks/exploits

- Test and identify DRAM address functions
 - Drama, DRAMDig, TRRespass RE, Dare (Zenhammer), AMDRE
- Test Rowhammer patterns and document bit flips
 - Blacksmith, TRRespass, RowhammerJs, Rowhammer-Test, FlipFloyd, RowPress, HammerTool
- No attacks/exploits
 - No advantage in testing them on real-world systems

How can I participate?

- Get a free bootable USB stick from us
- or download bootable ISO from https://FlippyR.am

- Get a free bootable USB stick from us
- or download bootable ISO from https://FlippyR.am
- \rightarrow Run our tests while you don't need the system (e.g., while sleeping/at work)

- Get a free bootable USB stick from us
- or download bootable ISO from https://FlippyR.am
- \rightarrow Run our tests while you don't need the system (e.g., while sleeping/at work)
- $\rightarrow\,$ Upload your results \rightarrow then they contribute to our study

• Everything is open source: https://FlippyR.am

- Everything is open source: https://FlippyR.am
- Build the ISO and flash it yourself

- Everything is open source: https://FlippyR.am
- Build the ISO and flash it yourself
- Docker-Image is available as well

- Everything is open source: https://FlippyR.am
- Build the ISO and flash it yourself
- Docker-Image is available as well
- ISO-Image booted via USB is best

- Everything is open source: https://FlippyR.am
- Build the ISO and flash it yourself
- Docker-Image is available as well
- ISO-Image booted via USB is best
 - (your own or ours, doesn't matter for us)

• Got the USB stick from us?

• Got the USB stick from us?

More ideas to address concerns...

- Got the USB stick from us?
 - You know who we are

More ideas to address concerns...

- Got the USB stick from us?
 - You know who we are
 - This is a DFG-FWF research project

- Got the USB stick from us?
 - You know who we are
 - This is a DFG-FWF research project
 - We don't spread malware \rightarrow We would run into bigger problems if we would

- Got the USB stick from us?
 - You know who we are
 - This is a DFG-FWF research project
 - We don't spread malware \rightarrow We would run into bigger problems if we would
- Should I disconnect all disks and peripherals? If you feel like it...

- Got the USB stick from us?
 - You know who we are
 - This is a DFG-FWF research project
 - We don't spread malware \rightarrow We would run into bigger problems if we would
- Should I disconnect all disks and peripherals? If you feel like it...
- Science is important but I still have concerns

- Got the USB stick from us?
 - You know who we are
 - This is a DFG-FWF research project
 - We don't spread malware \rightarrow We would run into bigger problems if we would
- Should I disconnect all disks and peripherals? If you feel like it...
- Science is important but I still have concerns
 - Don't participate if you have concerns

- Got the USB stick from us?
 - You know who we are
 - This is a DFG-FWF research project
 - We don't spread malware \rightarrow We would run into bigger problems if we would
- Should I disconnect all disks and peripherals? If you feel like it...
- Science is important but I still have concerns
 - Don't participate if you have concerns
 - Otherwise: please help us answering a question that we can't answer without you

• How relevant is Rowhammer on real systems?

- How relevant is Rowhammer on real systems?
- Academics cannot answer this alone

- How relevant is Rowhammer on real systems?
- Academics cannot answer this alone
 - we need real users to know

- How relevant is Rowhammer on real systems?
- Academics cannot answer this alone
 - we need real users to know
- Other perks, if you want to:

- Academics cannot answer this alone
 - we need real users to know
- Other perks, if you want to:
 - Keep your flippyr.am USB stick

- How relevant is Rowhammer on real systems?
- Academics cannot answer this alone
 - we need real users to know
- Other perks, if you want to:
 - Keep your flippyr.am USB stick
 - Get a flippyr.am t-shirt if you test at least 10 systems (limited stock)

- How relevant is Rowhammer on real systems?
- Academics cannot answer this alone
 - we need real users to know
- Other perks, if you want to:
 - Keep your flippyr.am USB stick
 - Get a flippyr.am t-shirt if you test at least 10 systems (limited stock)
 - You can win a gift card (see website)

- How relevant is Rowhammer on real systems?
- Academics cannot answer this alone
 - we need real users to know
- Other perks, if you want to:
 - Keep your flippyr.am USB stick
 - Get a flippyr.am t-shirt if you test at least 10 systems (limited stock)
 - You can win a gift card (see website)
 - Get your name in the acknowledgements of our study

- How relevant is Rowhammer on real systems?
- Academics cannot answer this alone
 - we need real users to know
- Other perks, if you want to:
 - Keep your flippyr.am USB stick
 - Get a flippyr.am t-shirt if you test at least 10 systems (limited stock)
 - You can win a gift card (see website)
 - · Get your name in the acknowledgements of our study
 - Learn if your own hardware is affected

• Rowhammer: reliability issue + exploitable

- Rowhammer: reliability issue + exploitable
- Real-world prevalence still unclear

- Rowhammer: reliability issue + exploitable
- Real-world prevalence still unclear
- Join us: Contribute to the large-scale flippyr.am study!

Ten Years of Rowhammer

A Retrospect (and Path to the Future)

Martin Heckel^{1,2} (@lunkw1ll) Daniel Gruss¹ (@lavados) Florian Adamsky² (@c1t)

¹ Graz University of Technology
² Hof University of Applied Sciences

