
Rowhammer in the Wild
Large-Scale Insights from FlippyR.AM

Martin Heckel1,2 (@lunkw1ll)
Daniel Gruss1 (@lavados)
Florian Adamsky2 (@c1t)

1 Graz University of Technology
2 Hof University of Applied Sciences

What previously happened on
Rowhammer...

Overview DRAM

System DRAM

ChannelDIMMRankChipRowColumn

DI
MM

0

DI
MM

1

DI
MM

0

DI
MM

1

DI
MM

2

DI
MM

2

DI
MM

3

DI
MM

3

Row
0

Row
1

Row
2

Row
3

Row
4

Row
5

Row
6

Row
7

Rowb
uffe

r

Page
0

Page
1

2 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Overview DRAM

System DRAM

Channel

DIMMRankChipRowColumn

DI
MM

0

DI
MM

1

DI
MM

0

DI
MM

1

DI
MM

2

DI
MM

2

DI
MM

3

DI
MM

3

Row
0

Row
1

Row
2

Row
3

Row
4

Row
5

Row
6

Row
7

Rowb
uffe

r

Page
0

Page
1

2 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Overview DRAM

System DRAMChannel

DIMM

RankChipRowColumn

DI
MM

0

DI
MM

1

DI
MM

0

DI
MM

1

DI
MM

2

DI
MM

2

DI
MM

3

DI
MM

3

Row
0

Row
1

Row
2

Row
3

Row
4

Row
5

Row
6

Row
7

Rowb
uffe

r

Page
0

Page
1

2 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Overview DRAM

System DRAMChannelDIMM

Rank

ChipRowColumn

DI
MM

0

DI
MM

1

DI
MM

0

DI
MM

1

DI
MM

2

DI
MM

2

DI
MM

3

DI
MM

3

Row
0

Row
1

Row
2

Row
3

Row
4

Row
5

Row
6

Row
7

Rowb
uffe

r

Page
0

Page
1

2 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Overview DRAM

System DRAMChannelDIMMRank

Chip

RowColumn

DI
MM

0

DI
MM

1

DI
MM

0

DI
MM

1

DI
MM

2

DI
MM

2

DI
MM

3

DI
MM

3

Row
0

Row
1

Row
2

Row
3

Row
4

Row
5

Row
6

Row
7

Rowb
uffe

r

Page
0

Page
1

2 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Overview DRAM

System DRAMChannelDIMMRankChip

Row

Column

DI
MM

0

DI
MM

1

DI
MM

0

DI
MM

1

DI
MM

2

DI
MM

2

DI
MM

3

DI
MM

3

Row
0

Row
1

Row
2

Row
3

Row
4

Row
5

Row
6

Row
7

Rowb
uffe

r

Page
0

Page
1

2 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Overview DRAM

System DRAMChannelDIMMRankChipRow

Column

DI
MM

0

DI
MM

1

DI
MM

0

DI
MM

1

DI
MM

2

DI
MM

2

DI
MM

3

DI
MM

3

Row
0

Row
1

Row
2

Row
3

Row
4

Row
5

Row
6

Row
7

Rowb
uffe

r

Page
0

Page
1

2 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Overview DRAM

System DRAMChannelDIMMRankChipRowColumn

DI
MM

0

DI
MM

1

DI
MM

0

DI
MM

1

DI
MM

2

DI
MM

2

DI
MM

3

DI
MM

3

Row
0

Row
1

Row
2

Row
3

Row
4

Row
5

Row
6

Row
7

Rowb
uffe

r

Page
0

Page
1

2 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Structure within a DRAM bank

Row 0

Row 1

Row 2

…

Row n-1

Row n

DRAM array

Amplifier

Rowbuffer

Co
lu

mn
0

Co
lu

mn
1

Co
lu

mn
2

… Co
lu

mn
n-

1

Co
lu

mn
n

Page 0 Page 1

3 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Problems with DRAM

1. Capacitor loses its charge over time
• Cells must be refreshed regularly (refresh rate)
• Cells are normally refreshed every 64ms

2. When reading a row, we destroy the data in this row
• Intermediate memory in the row buffer

4 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Problems with DRAM

1. Capacitor loses its charge over time

• Cells must be refreshed regularly (refresh rate)
• Cells are normally refreshed every 64ms

2. When reading a row, we destroy the data in this row
• Intermediate memory in the row buffer

4 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Problems with DRAM

1. Capacitor loses its charge over time
• Cells must be refreshed regularly (refresh rate)

• Cells are normally refreshed every 64ms
2. When reading a row, we destroy the data in this row

• Intermediate memory in the row buffer

4 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Problems with DRAM

1. Capacitor loses its charge over time
• Cells must be refreshed regularly (refresh rate)
• Cells are normally refreshed every 64ms

2. When reading a row, we destroy the data in this row
• Intermediate memory in the row buffer

4 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Problems with DRAM

1. Capacitor loses its charge over time
• Cells must be refreshed regularly (refresh rate)
• Cells are normally refreshed every 64ms

2. When reading a row, we destroy the data in this row

• Intermediate memory in the row buffer

4 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Problems with DRAM

1. Capacitor loses its charge over time
• Cells must be refreshed regularly (refresh rate)
• Cells are normally refreshed every 64ms

2. When reading a row, we destroy the data in this row
• Intermediate memory in the row buffer

4 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Row Buffer

Row 0

Row 1

Row 2

…

Row n-1

Row n

Rowbuffer

Co
lu

mn
0

Co
lu

mn
1

Co
lu

mn
2

… Co
lu

mn
n-

1

Co
lu

mn
n

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0- - - - - - - - - - - - - - - -

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Reading
the row

Write
back the
content
of the
row

5 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Row Buffer

Row 0

Row 1

Row 2

…

Row n-1

Row n

Rowbuffer

Co
lu

mn
0

Co
lu

mn
1

Co
lu

mn
2

… Co
lu

mn
n-

1

Co
lu

mn
n

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

- - - - - - - - - - - - - - - -

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Reading
the row

Write
back the
content
of the
row

5 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Row Buffer

Row 0

Row 1

Row 2

…

Row n-1

Row n

Rowbuffer

Co
lu

mn
0

Co
lu

mn
1

Co
lu

mn
2

… Co
lu

mn
n-

1

Co
lu

mn
n

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

- - - - - - - - - - - - - - - -

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Reading
the row

Write
back the
content
of the
row

5 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Row Buffer

Row 0

Row 1

Row 2

…

Row n-1

Row n

Rowbuffer

Co
lu

mn
0

Co
lu

mn
1

Co
lu

mn
2

… Co
lu

mn
n-

1

Co
lu

mn
n

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0- - - - - - - - - - - - - - - -

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Reading
the row

Write
back the
content
of the
row

5 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Simple Example of Rowhammer

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

We can touch this!

1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0

hammertime:
mov (Row 0), %eax
mov (Row 2), %ebx
clflush (Row 0)
clflush (Row 2)
jmp hammertime

6 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Simple Example of Rowhammer

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

We can touch this!

1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0

hammertime:
mov (Row 0), %eax
mov (Row 2), %ebx
clflush (Row 0)
clflush (Row 2)
jmp hammertime

6 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Simple Example of Rowhammer

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

We can touch this!

1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0

hammertime:
mov (Row 0), %eax
mov (Row 2), %ebx
clflush (Row 0)
clflush (Row 2)
jmp hammertime

6 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Simple Example of Rowhammer

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

We can touch this!

1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0

hammertime:
mov (Row 0), %eax
mov (Row 2), %ebx
clflush (Row 0)
clflush (Row 2)
jmp hammertime

6 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Simple Example of Rowhammer

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

We can touch this!

1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0

hammertime:
mov (Row 0), %eax
mov (Row 2), %ebx
clflush (Row 0)
clflush (Row 2)
jmp hammertime

6 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Simple Example of Rowhammer

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

We can touch this!

1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0

hammertime:
mov (Row 0), %eax
mov (Row 2), %ebx
clflush (Row 0)
clflush (Row 2)
jmp hammertime

6 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Simple Example of Rowhammer

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

We can touch this!

1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0
hammertime:

mov (Row 0), %eax
mov (Row 2), %ebx
clflush (Row 0)
clflush (Row 2)
jmp hammertime

6 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Various Hammering Patterns

Single-Sided

Double-Sided One-Location

... and several more (e.g., many-sided hammering)

7 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Various Hammering Patterns

Single-Sided Double-Sided

One-Location

... and several more (e.g., many-sided hammering)

7 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Various Hammering Patterns

Single-Sided Double-Sided One-Location

... and several more (e.g., many-sided hammering)

7 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Various Hammering Patterns

Single-Sided Double-Sided One-Location

... and several more (e.g., many-sided hammering)

7 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Various Hammering Patterns

Single-Sided Double-Sided One-Location

... and several more (e.g., many-sided hammering)

7 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Target Row Refresh (TRR)

Sampler Inhibitor

TRR

8 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Target Row Refresh (TRR)

Sampler Inhibitor

TRR

8 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Target Row Refresh (TRR)

Sampler Inhibitor

TRR

8 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Target Row Refresh (TRR)

Sampler Inhibitor

TRR

8 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Target Row Refresh (TRR)

Sampler Inhibitor

TRR

8 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Target Row Refresh (TRR)

Sampler Inhibitor

TRR

8 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Non-uniform Patterns: Blacksmith

1

1

0
0

0

• Non-uniform Rowhammer Fuzzer
• Randomizes three characteristics:

Frequency: How often the aggressor row is accessed
Phase: First hammer after start of a pattern

Amplitude: How many consecutive hammers

• Found bit flips in all 41 DIMMs tested

9 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Non-uniform Patterns: Blacksmith

1

1

0
0

0 • Non-uniform Rowhammer Fuzzer

• Randomizes three characteristics:
Frequency: How often the aggressor row is accessed

Phase: First hammer after start of a pattern
Amplitude: How many consecutive hammers

• Found bit flips in all 41 DIMMs tested

9 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Non-uniform Patterns: Blacksmith

1

1

0
0

0 • Non-uniform Rowhammer Fuzzer
• Randomizes three characteristics:

Frequency: How often the aggressor row is accessed
Phase: First hammer after start of a pattern

Amplitude: How many consecutive hammers

• Found bit flips in all 41 DIMMs tested

9 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Non-uniform Patterns: Blacksmith

1

1

0
0

0 • Non-uniform Rowhammer Fuzzer
• Randomizes three characteristics:

Frequency: How often the aggressor row is accessed

Phase: First hammer after start of a pattern
Amplitude: How many consecutive hammers

• Found bit flips in all 41 DIMMs tested

9 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Non-uniform Patterns: Blacksmith

1

1

0
0

0 • Non-uniform Rowhammer Fuzzer
• Randomizes three characteristics:

Frequency: How often the aggressor row is accessed
Phase: First hammer after start of a pattern

Amplitude: How many consecutive hammers

• Found bit flips in all 41 DIMMs tested

9 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Non-uniform Patterns: Blacksmith

1

1

0
0

0 • Non-uniform Rowhammer Fuzzer
• Randomizes three characteristics:

Frequency: How often the aggressor row is accessed
Phase: First hammer after start of a pattern

Amplitude: How many consecutive hammers

• Found bit flips in all 41 DIMMs tested

9 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Non-uniform Patterns: Blacksmith

1

1

0
0

0 • Non-uniform Rowhammer Fuzzer
• Randomizes three characteristics:

Frequency: How often the aggressor row is accessed
Phase: First hammer after start of a pattern

Amplitude: How many consecutive hammers

• Found bit flips in all 41 DIMMs tested

9 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Reverse Engineering DRAM Addressing Functions

Page X

Page Y

Bank 1

Page y

Bank 2 Bank 3

STOPWATCH =

STOPWATCH =

10 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Reverse Engineering DRAM Addressing Functions

Page X

Page Y

Bank 1

Page y

Bank 2 Bank 3

STOPWATCH =

STOPWATCH =

10 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Reverse Engineering DRAM Addressing Functions

Page X

Page Y

Bank 1

Page y

Bank 2 Bank 3

STOPWATCH =

STOPWATCH =

10 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Reverse Engineering DRAM Addressing Functions

Page X

Page Y

Bank 1
Page y

Bank 2 Bank 3

STOPWATCH =

STOPWATCH =

10 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Reverse Engineering DRAM Addressing Functions

Page X

Page Y

Bank 1
Page y

Bank 2 Bank 3

STOPWATCH =

STOPWATCH =

10 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Row-Conflict Side Channel

210 220 230 240 250 260 270
0

20
40
60
80

100

Clock cycles

Fr
eq

ue
nc

y Row hits
Row misses

11 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Bank Addressing Functions

Physical Address (32 bit, 232 = 4GiB)

215 = 32768 Rows 210 = 1024 Columns

Cache Line

23 = 8B

0 00 0 0 1 0 1

0x22000

0 0 1 0 1 0

0x44000

0 1 0 1 0 0

0x88000

1 0 1 0 0 0

0x110000

1 1 1 1 1 1

⊕ bnk0

⊕ bnk1

⊕ bnk2

⊕ bnk3

12 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Bank Addressing Functions

Physical Address (32 bit, 232 = 4GiB)

215 = 32768 Rows

210 = 1024 Columns

Cache Line

23 = 8B

0 00 0 0 1 0 1

0x22000

0 0 1 0 1 0

0x44000

0 1 0 1 0 0

0x88000

1 0 1 0 0 0

0x110000

1 1 1 1 1 1

⊕ bnk0

⊕ bnk1

⊕ bnk2

⊕ bnk3

12 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Bank Addressing Functions

Physical Address (32 bit, 232 = 4GiB)

215 = 32768 Rows 210 = 1024 Columns

Cache Line

23 = 8B

0 00 0 0 1 0 1

0x22000

0 0 1 0 1 0

0x44000

0 1 0 1 0 0

0x88000

1 0 1 0 0 0

0x110000

1 1 1 1 1 1

⊕ bnk0

⊕ bnk1

⊕ bnk2

⊕ bnk3

12 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Bank Addressing Functions

Physical Address (32 bit, 232 = 4GiB)

215 = 32768 Rows 210 = 1024 Columns

Cache Line

23 = 8B

0 00 0 0 1 0 1

0x22000

0 0 1 0 1 0

0x44000

0 1 0 1 0 0

0x88000

1 0 1 0 0 0

0x110000

1 1 1 1 1 1

⊕ bnk0

⊕ bnk1

⊕ bnk2

⊕ bnk3

12 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Bank Addressing Functions

Physical Address (32 bit, 232 = 4GiB)

215 = 32768 Rows 210 = 1024 Columns

Cache Line

23 = 8B

0 00 0 0 1 0 1

0x22000

0 0 1 0 1 0

0x44000

0 1 0 1 0 0

0x88000

1 0 1 0 0 0

0x110000

1 1 1 1 1 1

⊕ bnk0

⊕ bnk1

⊕ bnk2

⊕ bnk3

12 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Bank Addressing Functions

Physical Address (32 bit, 232 = 4GiB)

215 = 32768 Rows 210 = 1024 Columns

Cache Line

23 = 8B

0 00 0 0 1 0 1

0x22000

0 0 1 0 1 0

0x44000

0 1 0 1 0 0

0x88000

1 0 1 0 0 0

0x110000

1 1 1 1 1 1

⊕ bnk0

⊕ bnk1

⊕ bnk2

⊕ bnk3

12 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Bank Addressing Functions

Physical Address (32 bit, 232 = 4GiB)

215 = 32768 Rows 210 = 1024 Columns

Cache Line

23 = 8B

0 00 0 0 1 0 1

0x22000

0 0 1 0 1 0

0x44000

0 1 0 1 0 0

0x88000

1 0 1 0 0 0

0x110000

1 1 1 1 1 1

⊕ bnk0

⊕ bnk1

⊕ bnk2

⊕ bnk3

12 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Bank Addressing Functions

Physical Address (32 bit, 232 = 4GiB)

215 = 32768 Rows 210 = 1024 Columns

Cache Line

23 = 8B

0 00 0 0 1 0 1

0x22000

0 0 1 0 1 0

0x44000

0 1 0 1 0 0

0x88000

1 0 1 0 0 0

0x110000

1 1 1 1 1 1

⊕ bnk0

⊕ bnk1

⊕ bnk2

⊕ bnk3

12 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Bank Addressing Functions

Physical Address (32 bit, 232 = 4GiB)

215 = 32768 Rows 210 = 1024 Columns

Cache Line

23 = 8B

0 0

0 0 0 1 0 1

0x22000

0 0 1 0 1 0

0x44000

0 1 0 1 0 0

0x88000

1 0 1 0 0 0

0x110000

1 1 1 1 1 1

⊕ bnk0

⊕ bnk1

⊕ bnk2

⊕ bnk3

12 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Bank Addressing Functions

Physical Address (32 bit, 232 = 4GiB)

215 = 32768 Rows 210 = 1024 Columns

Cache Line

23 = 8B

0 0

0 0 0 1 0 1

0x22000

0 0 1 0 1 0

0x44000

0 1 0 1 0 0

0x88000

1 0 1 0 0 0

0x110000

1 1 1 1 1 1

⊕ bnk0

⊕ bnk1

⊕ bnk2

⊕ bnk3

12 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Bank Addressing Functions

Physical Address (32 bit, 232 = 4GiB)

215 = 32768 Rows 210 = 1024 Columns

Cache Line

23 = 8B

0 00 0 0 1 0 1

0x22000

0 0 1 0 1 0

0x44000

0 1 0 1 0 0

0x88000

1 0 1 0 0 0

0x110000

1 1 1 1 1 1

⊕ bnk0

⊕ bnk1

⊕ bnk2

⊕ bnk3

12 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Bank Addressing Functions

Physical Address (32 bit, 232 = 4GiB)

215 = 32768 Rows 210 = 1024 Columns

Cache Line

23 = 8B

0 0

0 0 0 1 0 1

0x22000

0 0 1 0 1 0

0x44000

0 1 0 1 0 0

0x88000

1 0 1 0 0 0

0x110000

1 1 1 1 1 1

⊕ bnk0

⊕ bnk1

⊕ bnk2

⊕ bnk3

12 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Bank Addressing Functions

Physical Address (32 bit, 232 = 4GiB)

215 = 32768 Rows 210 = 1024 Columns

Cache Line

23 = 8B

0 0

0 0 0 1 0 1

0x22000

0 0 1 0 1 0

0x44000

0 1 0 1 0 0

0x88000

1 0 1 0 0 0

0x110000

1 1 1 1 1 1

⊕ bnk0

⊕ bnk1

⊕ bnk2

⊕ bnk3

12 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Bank Addressing Functions

Physical Address (32 bit, 232 = 4GiB)

215 = 32768 Rows 210 = 1024 Columns

Cache Line

23 = 8B

0 00 0 0 1 0 1

0x22000

0 0 1 0 1 0

0x44000

0 1 0 1 0 0

0x88000

1 0 1 0 0 0

0x110000

1 1 1 1 1 1

⊕ bnk0

⊕ bnk1

⊕ bnk2

⊕ bnk3

12 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Bank Addressing Functions

Physical Address (32 bit, 232 = 4GiB)

215 = 32768 Rows 210 = 1024 Columns

Cache Line

23 = 8B

0 0

0 0 0 1 0 1

0x22000

0 0 1 0 1 0

0x44000

0 1 0 1 0 0

0x88000

1 0 1 0 0 0

0x110000

1 1 1 1 1 1

⊕ bnk0

⊕ bnk1

⊕ bnk2

⊕ bnk3

12 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Bank Addressing Functions

Physical Address (32 bit, 232 = 4GiB)

215 = 32768 Rows 210 = 1024 Columns

Cache Line

23 = 8B

0 0

0 0 0 1 0 1

0x22000

0 0 1 0 1 0

0x44000

0 1 0 1 0 0

0x88000

1 0 1 0 0 0

0x110000

1 1 1 1 1 1

⊕ bnk0

⊕ bnk1

⊕ bnk2

⊕ bnk3

12 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Bank Addressing Functions

Physical Address (32 bit, 232 = 4GiB)

215 = 32768 Rows 210 = 1024 Columns

Cache Line

23 = 8B

0 0

0 0 0 1 0 1

0x22000

0 0 1 0 1 0

0x44000

0 1 0 1 0 0

0x88000

1 0 1 0 0 0

0x110000

1 1 1 1 1 1

⊕ bnk0

⊕ bnk1

⊕ bnk2

⊕ bnk3

12 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

DRAM Addressing Function Verification

5 10 15 20 25 30 35 40
0%

50%

100%

Number of measurement n

Su
cc

es
s

ra
te

Measurements Expected

13 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Novel Insights over the last Year

Column-based disturbance errors – ColumnDisturb

Sense Amplifier

Sense Amplifier

Subarray

Subarray

Subarray



14 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Column-based disturbance errors – ColumnDisturb

Sense Amplifier

Sense Amplifier

Subarray

Subarray

Subarray



14 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Column-based disturbance errors – ColumnDisturb

Sense Amplifier

Sense Amplifier

Subarray

Subarray

Subarray



14 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Column-based disturbance errors – ColumnDisturb

Sense Amplifier

Sense Amplifier

Subarray

Subarray

Subarray



14 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Column-based disturbance errors – ColumnDisturb

Sense Amplifier

Sense Amplifier

Subarray

Subarray

Subarray



14 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Column-based disturbance errors – ColumnDisturb

Sense Amplifier

Sense Amplifier

Subarray

Subarray

Subarray



14 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Column-based disturbance errors – ColumnDisturb

Sense Amplifier

Sense Amplifier

Subarray

Subarray

Subarray

14 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Rowhammer Attacks on GPUs – GPUHammer

15 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Rowhammer Attacks on GPUs – GPUHammer

15 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Rowhammer Attacks on GPUs – GPUHammer

• Rowhammer attacks on GDDR6 (GPUs)

• Evicting with discard and .volatile
• Degrading accuracy of ML models from 80%
down to 0.02%

16 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Rowhammer Attacks on GPUs – GPUHammer

• Rowhammer attacks on GDDR6 (GPUs)
• Evicting with discard and .volatile

• Degrading accuracy of ML models from 80%
down to 0.02%

16 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Rowhammer Attacks on GPUs – GPUHammer

• Rowhammer attacks on GDDR6 (GPUs)
• Evicting with discard and .volatile
• Degrading accuracy of ML models from 80%
down to 0.02%

16 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Improved Device Fingerprinting – FP-Rowhammer

• Multiple experiments on bit flip stability on a
total of 98 DIMMs

• 99.91% fingerprinting accuracy
• Fingerprint extraction in less than 5 s
• Fingerprints were stable over a period of 10
days

17 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Improved Device Fingerprinting – FP-Rowhammer

• Multiple experiments on bit flip stability on a
total of 98 DIMMs

• 99.91% fingerprinting accuracy

• Fingerprint extraction in less than 5 s
• Fingerprints were stable over a period of 10
days

17 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Improved Device Fingerprinting – FP-Rowhammer

• Multiple experiments on bit flip stability on a
total of 98 DIMMs

• 99.91% fingerprinting accuracy
• Fingerprint extraction in less than 5 s

• Fingerprints were stable over a period of 10
days

17 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Improved Device Fingerprinting – FP-Rowhammer

• Multiple experiments on bit flip stability on a
total of 98 DIMMs

• 99.91% fingerprinting accuracy
• Fingerprint extraction in less than 5 s
• Fingerprints were stable over a period of 10
days

17 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Rowhammer on DDR4 ECC – ECC.fail

• Hynix TRR sampler can be easily confused
• Reverse-engineered Intel’s ECC matrix on
Skylake and Cascade Lake

• Specific attack templates resulting in
undetectable attacks

18 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Rowhammer on DDR4 ECC – ECC.fail

• Hynix TRR sampler can be easily confused

• Reverse-engineered Intel’s ECC matrix on
Skylake and Cascade Lake

• Specific attack templates resulting in
undetectable attacks

18 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Rowhammer on DDR4 ECC – ECC.fail

• Hynix TRR sampler can be easily confused
• Reverse-engineered Intel’s ECC matrix on
Skylake and Cascade Lake

• Specific attack templates resulting in
undetectable attacks

18 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Rowhammer on DDR4 ECC – ECC.fail

• Hynix TRR sampler can be easily confused
• Reverse-engineered Intel’s ECC matrix on
Skylake and Cascade Lake

• Specific attack templates resulting in
undetectable attacks

18 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Refreshes and the Standard

“ To allow for improved efficiency in scheduling and switching between
tasks, some flexibility in the absolute refresh interval is provided for post-
poning and pulling-in refresh command.

JEDEC Solid State Technology Association. DDR4 SDRAM ”
19 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Refreshes and the Standard

“ To allow for improved efficiency in scheduling and switching between
tasks, some flexibility in the absolute refresh interval is provided for post-
poning and pulling-in refresh command.

JEDEC Solid State Technology Association. DDR4 SDRAM ”
19 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Refreshes and the Standard

“ To allow for improved efficiency in scheduling and switching between
tasks, some flexibility in the absolute refresh interval is provided for post-
poning and pulling-in refresh command.

JEDEC Solid State Technology Association. DDR4 SDRAM ”
19 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Browser-based Rowhammer Attacks on DDR4 – Posthammer

Not Postponed

tREFI REF1 tREFI REF2 tREFI REF3 tREFI REF4 . . .

Postponed

tREFI tREFI tREFI tREFI REF1 REF2 REF3 REF4 . . .

NOP NOP

20 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Browser-based Rowhammer Attacks on DDR4 – Posthammer

Not Postponed

tREFI REF1 tREFI REF2 tREFI REF3 tREFI REF4 . . .

Postponed

tREFI tREFI tREFI tREFI REF1 REF2 REF3 REF4 . . .

NOP NOP

20 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Browser-based Rowhammer Attacks on DDR4 – Posthammer

Not Postponed

tREFI REF1 tREFI REF2 tREFI REF3 tREFI REF4 . . .

Postponed

tREFI tREFI tREFI tREFI REF1 REF2 REF3 REF4 . . .

NOP NOP

20 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Changes on DDR5

• Higher Refresh Rate (every 3.9 µs)
• Refresh Management (RFM)
• On-Die ECC (ODECC)

21 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Changes on DDR5

• Higher Refresh Rate (every 3.9 µs)

• Refresh Management (RFM)
• On-Die ECC (ODECC)

21 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Changes on DDR5

• Higher Refresh Rate (every 3.9 µs)
• Refresh Management (RFM)

• On-Die ECC (ODECC)

21 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Changes on DDR5

• Higher Refresh Rate (every 3.9 µs)
• Refresh Management (RFM)
• On-Die ECC (ODECC)

21 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

TRR on DDR5

0 32 64 96 128
0

10

20 Lightly Sampled Intervals

Refresh Interval Index

#
T

R
R

s
A

cr
o
ss

 R
e
p

s.

22 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

TRR on DDR5

0 32 64 96 128
0

10

20 Lightly Sampled Intervals

Refresh Interval Index

#
T

R
R

s
A

cr
o
ss

 R
e
p

s.

0 32 64 96 128
0

10

20 Lightly Sampled Intervals

Refresh Interval Index

#
T

R
R

s
A

cr
o
ss

 R
e
p

s.

22 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

TRR on DDR5

0 32 64 96 128
0

10

20 Lightly Sampled Intervals

Refresh Interval Index

#
T

R
R

s
A

cr
o
ss

 R
e
p

s.

22 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

New Patterns for DDR5 (Phoenix)

REF1 REF2 REF3 · · · REF64 1 2 3 4

Pattern repeats

First part Second part
×16

23 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

New Patterns for DDR5 (Phoenix)

REF1 REF2 REF3 · · · REF64 1 2 3 4

Pattern repeats

First part Second part
×16

23 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

FlippyRAM – Large-Scale Rowhammer Study

Overview

User Agreements
Privacy Policy
Risk Agreement

System Information
Retrieval

Reverse Engineer-
ing of the Ad-

dressing Functions

Verification & Injection
of the Addressing
Functions in the
Rowhammer PoCs

Running different
Rowhammer Tools

Optional up-
loading the data
to our server

24 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Overview

User Agreements
Privacy Policy
Risk Agreement

System Information
Retrieval

Reverse Engineer-
ing of the Ad-

dressing Functions

Verification & Injection
of the Addressing
Functions in the
Rowhammer PoCs

Running different
Rowhammer Tools

Optional up-
loading the data
to our server

24 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Overview

User Agreements
Privacy Policy
Risk Agreement

System Information
Retrieval

Reverse Engineer-
ing of the Ad-

dressing Functions

Verification & Injection
of the Addressing
Functions in the
Rowhammer PoCs

Running different
Rowhammer Tools

Optional up-
loading the data
to our server

24 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Overview

User Agreements
Privacy Policy
Risk Agreement

System Information
Retrieval

Reverse Engineer-
ing of the Ad-

dressing Functions

Verification & Injection
of the Addressing
Functions in the
Rowhammer PoCs

Running different
Rowhammer Tools

Optional up-
loading the data
to our server

24 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Overview

User Agreements
Privacy Policy
Risk Agreement

System Information
Retrieval

Reverse Engineer-
ing of the Ad-

dressing Functions

Verification & Injection
of the Addressing
Functions in the
Rowhammer PoCs

Running different
Rowhammer Tools

Optional up-
loading the data
to our server

24 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Overview

User Agreements
Privacy Policy
Risk Agreement

System Information
Retrieval

Reverse Engineer-
ing of the Ad-

dressing Functions

Verification & Injection
of the Addressing
Functions in the
Rowhammer PoCs

Running different
Rowhammer Tools

Optional up-
loading the data
to our server

24 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Overview

User Agreements
Privacy Policy
Risk Agreement

System Information
Retrieval

Reverse Engineer-
ing of the Ad-

dressing Functions

Verification & Injection
of the Addressing
Functions in the
Rowhammer PoCs

Running different
Rowhammer Tools

Optional up-
loading the data
to our server

24 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

How could Users participate?

• Get a free bootable USB stick from us
• or download bootable ISO from
https://FlippyR.am – and verify the hash either
way!

25 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

https://FlippyR.am

How could Users participate?

• Get a free bootable USB stick from us

• or download bootable ISO from
https://FlippyR.am – and verify the hash either
way!

25 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

https://FlippyR.am

How could Users participate?

• Get a free bootable USB stick from us

• or download bootable ISO from
https://FlippyR.am – and verify the hash either
way!

25 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

https://FlippyR.am

How could Users participate?

• Get a free bootable USB stick from us

• or download bootable ISO from
https://FlippyR.am – and verify the hash either
way!

25 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

https://FlippyR.am

How could Users participate?

• Get a free bootable USB stick from us
• or download bootable ISO from
https://FlippyR.am – and verify the hash either
way!

25 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

https://FlippyR.am

How could Users participate?

• Get a free bootable USB stick from us
• or download bootable ISO from
https://FlippyR.am – and verify the hash either
way!

25 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

https://FlippyR.am

Hash mismatches and other hickups

• Flashing hundreds of USB sticks over Christmas

• Cheap USB sticks
• Actually a small bug in the framework:

• Plan: write a nice summary for users
• Testing first stick (took ≈ 8 hours) while flashing more→ ≈ 700 drives done
• Bug: summary is missing→ Bugfix→ different hash!

26 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Hash mismatches and other hickups

• Flashing hundreds thousands of USB sticks over Christmas

• Cheap USB sticks
• Actually a small bug in the framework:

• Plan: write a nice summary for users
• Testing first stick (took ≈ 8 hours) while flashing more→ ≈ 700 drives done
• Bug: summary is missing→ Bugfix→ different hash!

26 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Hash mismatches and other hickups

• Flashing hundreds thousands of USB sticks over Christmas
• Cheap USB sticks

• Actually a small bug in the framework:

• Plan: write a nice summary for users
• Testing first stick (took ≈ 8 hours) while flashing more→ ≈ 700 drives done
• Bug: summary is missing→ Bugfix→ different hash!

26 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Hash mismatches and other hickups

• Flashing hundreds thousands of USB sticks over Christmas
• Cheap USB sticks
• Actually a small bug in the framework:

• Plan: write a nice summary for users
• Testing first stick (took ≈ 8 hours) while flashing more→ ≈ 700 drives done
• Bug: summary is missing→ Bugfix→ different hash!

26 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Hash mismatches and other hickups

• Flashing hundreds thousands of USB sticks over Christmas
• Cheap USB sticks
• Actually a small bug in the framework:

• Plan: write a nice summary for users

• Testing first stick (took ≈ 8 hours) while flashing more→ ≈ 700 drives done
• Bug: summary is missing→ Bugfix→ different hash!

26 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Hash mismatches and other hickups

• Flashing hundreds thousands of USB sticks over Christmas
• Cheap USB sticks
• Actually a small bug in the framework:

• Plan: write a nice summary for users
• Testing first stick (took ≈ 8 hours) while flashing more→ ≈ 700 drives done

• Bug: summary is missing→ Bugfix→ different hash!

26 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Hash mismatches and other hickups

• Flashing hundreds thousands of USB sticks over Christmas
• Cheap USB sticks
• Actually a small bug in the framework:

• Plan: write a nice summary for users
• Testing first stick (took ≈ 8 hours) while flashing more→ ≈ 700 drives done

• Bug: summary is missing→ Bugfix→ different hash!

26 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Hash mismatches and other hickups

• Flashing hundreds thousands of USB sticks over Christmas
• Cheap USB sticks
• Actually a small bug in the framework:

• Plan: write a nice summary for users
• Testing first stick (took ≈ 8 hours) while flashing more→ ≈ 700 drives done
• Bug: summary is missing→ Bugfix→ different hash!

26 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Flashing left Scratches ...

27 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Flashing left Scratches ...

27 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Flashing left Scratches ...

27 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Engineering Flowchart

Engineering Flowchart

DOES IT MOVE?

No

Should it?

No

No
Problem

Yes

Yes

Should it?

Yes

No
Problem

No

28 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

More complicated flashing Process required

29 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

More complicated flashing Process required

29 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

More complicated flashing Process required

29 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

More complicated flashing Process required

29 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

USB Sticks: How it started

— How it’s going

30 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

USB Sticks: How it started

— How it’s going

30 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

USB Sticks: How it started — How it’s going

30 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

USB Sticks: How it started

— How it’s going

30 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Results

Overview

User Agreements
Privacy Policy
Risk Agreement

System Information
Retrieval

Reverse Engineer-
ing of the Ad-

dressing Functions

Verification & Injection
of the Addressing
Functions in the
Rowhammer PoCs

Running different
Rowhammer Tools

Optional up-
loading the data
to our server

31 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Reverse Engineering of the Addressing Functions

amdre dare drama dramdig trrespass

0

500

1,000

#
of
Da
ta
se
ts

Ended

32 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Reverse Engineering of the Addressing Functions

amdre dare drama dramdig trrespass

0

500

1,000

#
of
Da
ta
se
ts

Runtime Ended

32 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Reverse Engineering of the Addressing Functions

amdre dare drama dramdig trrespass

0

500

1,000

#
of
Da
ta
se
ts

Hugepage Runtime Ended

32 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Reverse Engineering of the Addressing Functions

amdre dare drama dramdig trrespass

0

500

1,000

#
of
Da
ta
se
ts

Failed Hugepage Runtime Ended

32 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Reverse Engineering of the Addressing Functions

amdre dare drama dramdig trrespass

0

500

1,000

1,006
(481)

1,006
(385)

1,006
(485)

1,006
(122)

1,006
(416)

#
of
Da
ta
se
ts

Other Failed Hugepage Runtime Ended

32 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

(#1): Majority of cases: reverse-engineering tools fail,
crash, or exceed time limits!

Running different Rowhammer Tools

Blacksmith
FlipFloyd

TRRespass
HammerTool

RowhammerJs

Rowhammer-Test

Rowpress

500

1,000

#
of
Da
ta
se
ts

Ended

33 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Running different Rowhammer Tools

Blacksmith
FlipFloyd

TRRespass
HammerTool

RowhammerJs

Rowhammer-Test

Rowpress

500

1,000

#
of
Da
ta
se
ts

HugePage Ended

33 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Running different Rowhammer Tools

Blacksmith
FlipFloyd

TRRespass
HammerTool

RowhammerJs

Rowhammer-Test

Rowpress

500

1,000

#
of
Da
ta
se
ts

AFn RE HugePage Ended

33 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Running different Rowhammer Tools

Blacksmith
FlipFloyd

TRRespass
HammerTool

RowhammerJs

Rowhammer-Test

Rowpress

500

1,000

#
of
Da
ta
se
ts

Failed AFn RE HugePage Ended

33 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Running different Rowhammer Tools

Blacksmith
FlipFloyd

TRRespass
HammerTool

RowhammerJs

Rowhammer-Test

Rowpress

500

1,000

#
of
Da
ta
se
ts

Build Failed Failed AFn RE HugePage Ended

33 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Running different Rowhammer Tools

Blacksmith
FlipFloyd

TRRespass
HammerTool

RowhammerJs

Rowhammer-Test

Rowpress

500

1,000

1,006
(299)

1,006
(935)

1,006
(217)

1,006
(152)

1,006
(385)

1,006
(705)

1,006
(240)

#
of
Da
ta
se
ts

Other Build Failed Failed AFn RE HugePage Ended

33 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

(#2): Many Rowhammer tools failed because of missing
DRAM functions or 1 GiB hugepages.

Affected by Tool

Blacksmith
FlipFloyd

TRRespass
HammerTool

RowhammerJs

Rowhammer-Test

Rowpress

0

20

40

0

21

0

16

47

31

0

40

2 2 0 2 2 4

Aff
ec
te
d
Da
ta
se
ts

DDR3
DDR4

34 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

(#3): 126 (12.5%) out of 1006 datasets are vulnerable to
fully-automated Rowhammer attacks!

Affected systems by CPU Vendor

Intel

AMD

Other

Total

0

500

1,000

#
of
Da
ta
se
ts

Affected

35 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Affected systems by CPU Vendor

Intel

AMD

Other

Total

0

500

1,000

#
of
Da
ta
se
ts

Not Affected Affected

35 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Affected systems by CPU Vendor

Intel

AMD

Other

Total

0

500

1,000 777
123 (15.8 %)

224
3 (1.3 %) 5

0 (0 %)

1,006
126 (12.5 %)

#
of
Da
ta
se
ts

No AFn Not Affected Affected

35 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Affected systems by CPU Vendor

Intel

AMD

Other

Total

0

500

1,000 777
123 (15.8 %)

224
3 (1.3 %) 5

0 (0 %)

1,006
126 (12.5 %)

#
of
Da
ta
se
ts

No AFn Not Affected Affected

35 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Affected systems by CPU Vendor

Intel

AMD

Other

Total

0

500

1,000 777
123 (15.8 %)

224
3 (1.3 %) 5

0 (0 %)

1,006
126 (12.5 %)

#
of
Da
ta
se
ts

No AFn Not Affected Affected

35 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Affected systems by CPU Vendor

Intel

AMD

Other

Total

0

500

1,000 777
123 (15.8 %)

224
3 (1.3 %) 5

0 (0 %)

1,006
126 (12.5 %)

#
of
Da
ta
se
ts

No AFn Not Affected Affected

35 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

(#4): Mainly tools for Intel, fewer AMD tools, especially
when we started the study→ we expect AMD to be equally
affected.

Affected DIMMs by DRAM Generation

LPDDR3

LPDDR4

LPDDR5

DDR2

DDR3

DDR4

DDR5

Other

Total

0

500

1,000

#
of
Da
ta
se
ts

Affected

36 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Affected DIMMs by DRAM Generation

LPDDR3

LPDDR4

LPDDR5

DDR2

DDR3

DDR4

DDR5

Other

Total

0

500

1,000

#
of
Da
ta
se
ts Not Affected

Affected

36 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Affected DIMMs by DRAM Generation

LPDDR3

LPDDR4

LPDDR5

DDR2

DDR3

DDR4

DDR5

Other

Total

0

500

1,000

34
0

30
0

20
0

7
0

302
82 (27.2%)

502
44 (8.8%)

83
0 28

0

1,006
126 (12.5%)

#
of
Da
ta
se
ts

No AFn
Not Affected
Affected

36 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

(#5): DDR3→ simple fast patterns (RowhammerJS);
DDR4 with TRR→ pattern fuzzing for non-uniform patterns
(Blacksmith)

Affected DIMMs by DRAM Vendor

Samsung Hynix Micron Other Total

0

500

1,000

321
31.7 % 142

28.6 %
130

2.4 %
179

22.8 %

772
24.1 %

#
of
DI
M
M
s

Not Affected Affected

37 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

(#6): DRAM from Samsung, Hynix, and third-party resellers
similarly affected by Rowhammer but only 2.4% of Micron
DIMMs?

Rowhammer in the Future

Probable Future

󰬯

• More proprietary mitigations, similar to TRR
• Problem: Nobody can verify how good/effective
they are

• The cat-and-mouse game will continue
• Solution: Publish mitigation algorithms so they
can be analyzed by everybody

38 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Probable Future

󰬯
• More proprietary mitigations, similar to TRR

• Problem: Nobody can verify how good/effective
they are

• The cat-and-mouse game will continue
• Solution: Publish mitigation algorithms so they
can be analyzed by everybody

38 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Probable Future

󰬯
• More proprietary mitigations, similar to TRR
• Problem: Nobody can verify how good/effective
they are

• The cat-and-mouse game will continue
• Solution: Publish mitigation algorithms so they
can be analyzed by everybody

38 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Probable Future

󰬯
• More proprietary mitigations, similar to TRR
• Problem: Nobody can verify how good/effective
they are

• The cat-and-mouse game will continue

• Solution: Publish mitigation algorithms so they
can be analyzed by everybody

38 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Probable Future

󰬯
• More proprietary mitigations, similar to TRR
• Problem: Nobody can verify how good/effective
they are

• The cat-and-mouse game will continue

• Solution: Publish mitigation algorithms so they
can be analyzed by everybody

38 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Probable Future

󰬯
• More proprietary mitigations, similar to TRR
• Problem: Nobody can verify how good/effective
they are

• The cat-and-mouse game will continue
• Solution: Publish mitigation algorithms so they
can be analyzed by everybody

38 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Probable Future

󰬯
• More proprietary mitigations, similar to TRR
• Problem: Nobody can verify how good/effective
they are

• The cat-and-mouse game will continue
• Solution: Publish mitigation algorithms so they
can be analyzed by everybody

38 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

More powerful Attacks



• Better addressing function reverse-engineering
• Better tools on different platforms
• More exploits

39 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

More powerful Attacks


• Better addressing function reverse-engineering

• Better tools on different platforms
• More exploits

39 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

More powerful Attacks


• Better addressing function reverse-engineering
• Better tools on different platforms

• More exploits

39 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

More powerful Attacks


• Better addressing function reverse-engineering
• Better tools on different platforms
• More exploits

39 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

More powerful Attacks


• Better addressing function reverse-engineering
• Better tools on different platforms
• More exploits

39 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Defense Directions

• Process “improvements”

• back to 300nm? more distance between cells?
• Spatial isolation (e.g., CATT, ZebRAM, ...)

• Problem 1: bit flips sometimes more distant
• Problem 2: ColumnDisturb

• Changing ratio between memory accesses and
refreshes (more refreshes!)

• Increase refresh rate, TRR, ...,

Memory Band-Aid

• Integrity Protection

• ECC, more ECC, Chipkill, ...,

CSI:Rowhammer

40 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Defense Directions

• Process “improvements”
• back to 300nm? more distance between cells?

• Spatial isolation (e.g., CATT, ZebRAM, ...)

• Problem 1: bit flips sometimes more distant
• Problem 2: ColumnDisturb

• Changing ratio between memory accesses and
refreshes (more refreshes!)

• Increase refresh rate, TRR, ...,

Memory Band-Aid

• Integrity Protection

• ECC, more ECC, Chipkill, ...,

CSI:Rowhammer

40 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Defense Directions

• Process “improvements”
• back to 300nm? more distance between cells?

• Spatial isolation (e.g., CATT, ZebRAM, ...)

• Problem 1: bit flips sometimes more distant
• Problem 2: ColumnDisturb

• Changing ratio between memory accesses and
refreshes (more refreshes!)

• Increase refresh rate, TRR, ...,

Memory Band-Aid

• Integrity Protection

• ECC, more ECC, Chipkill, ...,

CSI:Rowhammer

40 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Defense Directions

• Process “improvements”
• back to 300nm? more distance between cells?

• Spatial isolation (e.g., CATT, ZebRAM, ...)

• Problem 1: bit flips sometimes more distant
• Problem 2: ColumnDisturb

• Changing ratio between memory accesses and
refreshes (more refreshes!)

• Increase refresh rate, TRR, ...,

Memory Band-Aid

• Integrity Protection

• ECC, more ECC, Chipkill, ...,

CSI:Rowhammer

40 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Defense Directions

• Process “improvements”
• back to 300nm? more distance between cells?

• Spatial isolation (e.g., CATT, ZebRAM, ...)
• Problem 1: bit flips sometimes more distant

• Problem 2: ColumnDisturb
• Changing ratio between memory accesses and
refreshes (more refreshes!)

• Increase refresh rate, TRR, ...,

Memory Band-Aid

• Integrity Protection

• ECC, more ECC, Chipkill, ...,

CSI:Rowhammer

40 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Defense Directions

• Process “improvements”
• back to 300nm? more distance between cells?

• Spatial isolation (e.g., CATT, ZebRAM, ...)
• Problem 1: bit flips sometimes more distant
• Problem 2: ColumnDisturb

• Changing ratio between memory accesses and
refreshes (more refreshes!)

• Increase refresh rate, TRR, ...,

Memory Band-Aid

• Integrity Protection

• ECC, more ECC, Chipkill, ...,

CSI:Rowhammer

40 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Defense Directions

• Process “improvements”
• back to 300nm? more distance between cells?

• Spatial isolation (e.g., CATT, ZebRAM, ...)
• Problem 1: bit flips sometimes more distant
• Problem 2: ColumnDisturb

• Changing ratio between memory accesses and
refreshes (more refreshes!)

• Increase refresh rate, TRR, ...,

Memory Band-Aid

• Integrity Protection

• ECC, more ECC, Chipkill, ...,

CSI:Rowhammer

40 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Defense Directions

• Process “improvements”
• back to 300nm? more distance between cells?

• Spatial isolation (e.g., CATT, ZebRAM, ...)
• Problem 1: bit flips sometimes more distant
• Problem 2: ColumnDisturb

• Changing ratio between memory accesses and
refreshes (more refreshes!)
• Increase refresh rate, TRR, ...,

Memory Band-Aid
• Integrity Protection

• ECC, more ECC, Chipkill, ...,

CSI:Rowhammer

40 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Defense Directions

• Process “improvements”
• back to 300nm? more distance between cells?

• Spatial isolation (e.g., CATT, ZebRAM, ...)
• Problem 1: bit flips sometimes more distant
• Problem 2: ColumnDisturb

• Changing ratio between memory accesses and
refreshes (more refreshes!)
• Increase refresh rate, TRR, ..., Memory Band-Aid

• Integrity Protection

• ECC, more ECC, Chipkill, ...,

CSI:Rowhammer

40 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Defense Directions

• Process “improvements”
• back to 300nm? more distance between cells?

• Spatial isolation (e.g., CATT, ZebRAM, ...)
• Problem 1: bit flips sometimes more distant
• Problem 2: ColumnDisturb

• Changing ratio between memory accesses and
refreshes (more refreshes!)
• Increase refresh rate, TRR, ..., Memory Band-Aid

• Integrity Protection

• ECC, more ECC, Chipkill, ...,

CSI:Rowhammer

40 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Defense Directions

• Process “improvements”
• back to 300nm? more distance between cells?

• Spatial isolation (e.g., CATT, ZebRAM, ...)
• Problem 1: bit flips sometimes more distant
• Problem 2: ColumnDisturb

• Changing ratio between memory accesses and
refreshes (more refreshes!)
• Increase refresh rate, TRR, ..., Memory Band-Aid

• Integrity Protection
• ECC, more ECC, Chipkill, ...,

CSI:Rowhammer

40 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Defense Directions

• Process “improvements”
• back to 300nm? more distance between cells?

• Spatial isolation (e.g., CATT, ZebRAM, ...)
• Problem 1: bit flips sometimes more distant
• Problem 2: ColumnDisturb

• Changing ratio between memory accesses and
refreshes (more refreshes!)
• Increase refresh rate, TRR, ..., Memory Band-Aid

• Integrity Protection
• ECC, more ECC, Chipkill, ..., CSI:Rowhammer

40 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

CSI:Rowhammer

MC MAC
Compute

=
No

Correct
1 Flip

CPU Core

MAC
Compute

Secure
Memory

Corruption Exception

Integrity Information

OS
Advanced Correction
e.g. Reload from Disk

Exception Handler

Correction
as a Search

41 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

CSI:Rowhammer Correction Duration

Errors # MAC Comp. Avg Duration

1 17 11ns
2 771 3.68 µs
3 33 800 124µs
4 1.51 × 106 6.65ms
5 6.91 × 107 261ms
6 3.07 × 109 12.8 s
7 1.21 × 1011 9.11min
8 5.72 × 1012 6.11 h

42 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Memory Band-Aid: Overview

Untrusted
Workload

Trusted
Workload

Memory
Controller

OS

DRAM

limited

unlimited

Set Memory Bandwidth Limit

enforce limit by
throttling ac-
cesses

43 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Memory Band-Aid Results

• Requires hardware changes

• Per-bank limit
• Per-process limit

→ no overhead for trusted processes
• Other processes: 0% to 9.4% in
macro-benchmarks

44 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Memory Band-Aid Results

• Requires hardware changes
• Per-bank limit

• Per-process limit
→ no overhead for trusted processes
• Other processes: 0% to 9.4% in
macro-benchmarks

44 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Memory Band-Aid Results

• Requires hardware changes
• Per-bank limit
• Per-process limit

→ no overhead for trusted processes
• Other processes: 0% to 9.4% in
macro-benchmarks

44 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Memory Band-Aid Results

• Requires hardware changes
• Per-bank limit
• Per-process limit

→ no overhead for trusted processes

• Other processes: 0% to 9.4% in
macro-benchmarks

44 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Memory Band-Aid Results

• Requires hardware changes
• Per-bank limit
• Per-process limit

→ no overhead for trusted processes
• Other processes: 0% to 9.4% in
macro-benchmarks

44 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

FlippyRAM for better reproducable Research

• it is easy to add new tools
• ... and test your additions on many systems
• ... and compare against existing tools
• ... and help others reproduce your results

45 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

FlippyRAM for better reproducable Research

• it is easy to add new tools

• ... and test your additions on many systems
• ... and compare against existing tools
• ... and help others reproduce your results

45 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

FlippyRAM for better reproducable Research

• it is easy to add new tools
• ... and test your additions on many systems

• ... and compare against existing tools
• ... and help others reproduce your results

45 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

FlippyRAM for better reproducable Research

• it is easy to add new tools
• ... and test your additions on many systems
• ... and compare against existing tools

• ... and help others reproduce your results

45 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

FlippyRAM for better reproducable Research

• it is easy to add new tools
• ... and test your additions on many systems
• ... and compare against existing tools
• ... and help others reproduce your results

45 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Conclusion

• Rowhammer can be weaponized today (≈ 12.5% of systems)

• ≈ 2x with addressing functions and 2x with CPU diversity solved
→ ≈ 50% of systems

• Defense game needs to change:

• Dummy

46 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Conclusion

• Rowhammer can be weaponized today (≈ 12.5% of systems)
• ≈ 2x with addressing functions and 2x with CPU diversity solved

→ ≈ 50% of systems

• Defense game needs to change:

• Dummy

46 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Conclusion

• Rowhammer can be weaponized today (≈ 12.5% of systems)
• ≈ 2x with addressing functions and 2x with CPU diversity solved

→ ≈ 50% of systems
• Defense game needs to change:

• Dummy

46 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Conclusion

• Rowhammer can be weaponized today (≈ 12.5% of systems)
• ≈ 2x with addressing functions and 2x with CPU diversity solved

→ ≈ 50% of systems
• Defense game needs to change:

• New defense, secret parameters→ find out parameters→ bypass

46 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Conclusion

• Rowhammer can be weaponized today (≈ 12.5% of systems)
• ≈ 2x with addressing functions and 2x with CPU diversity solved

→ ≈ 50% of systems
• Defense game needs to change:

• Security by obscurity

46 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

Rowhammer in the Wild
Large-Scale Insights from FlippyR.AM

Martin Heckel1,2 (@lunkw1ll)
Daniel Gruss1 (@lavados)
Florian Adamsky2 (@c1t)

1 Graz University of Technology
2 Hof University of Applied Sciences

Image Attribution

• Toilet Paper Blank from Slide 20 is from Dazzle UI and is under the CC
Attribution License

48 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

	What previously happened on Rowhammer...
	Novel Insights over the last Year
	FlippyRAM – Large-Scale Rowhammer Study
	Results
	Rowhammer in the Future

