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What previously happened on
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Structure within a DRAM bank
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Problems with DRAM

1. Capacitor loses its charge over time
• Cells must be refreshed regularly (refresh rate)
• Cells are normally refreshed every 64ms

2. When reading a row, we destroy the data in this row
• Intermediate memory in the row buffer
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Simple Example of Rowhammer

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

We can touch this!

1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0

hammertime:
mov (Row 0), %eax
mov (Row 2), %ebx
clflush (Row 0)
clflush (Row 2)
jmp hammertime
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Various Hammering Patterns

Single-Sided

Double-Sided One-Location

... and several more (e.g., many-sided hammering)
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Target Row Refresh (TRR)

Sampler Inhibitor

TRR
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Non-uniform Patterns: Blacksmith

1

1

0
0

0

• Non-uniform Rowhammer Fuzzer
• Randomizes three characteristics:

Frequency: How often the aggressor row is accessed
Phase: First hammer after start of a pattern

Amplitude: How many consecutive hammers

• Found bit flips in all 41 DIMMs tested
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Reverse Engineering DRAM Addressing Functions
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Row-Conflict Side Channel
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Bank Addressing Functions

Physical Address (32 bit, 232 = 4GiB)

215 = 32768 Rows 210 = 1024 Columns

Cache Line

23 = 8B

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 1 0 1

0x22000

0 0 1 0 1 0

0x44000

0 1 0 1 0 0

0x88000

1 0 1 0 0 0

0x110000

1 1 1 1 1 1

⊕ bnk0

⊕ bnk1

⊕ bnk2

⊕ bnk3
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DRAM Addressing Function Verification
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Novel Insights over the last Year
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• Evicting with discard and .volatile
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• Multiple experiments on bit flip stability on a
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days
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Rowhammer on DDR4 ECC – ECC.fail

• Hynix TRR sampler can be easily confused
• Reverse-engineered Intel’s ECC matrix on
Skylake and Cascade Lake

• Specific attack templates resulting in
undetectable attacks
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Refreshes and the Standard

“ To allow for improved efficiency in scheduling and switching between
tasks, some flexibility in the absolute refresh interval is provided for post-
poning and pulling-in refresh command.

JEDEC Solid State Technology Association. DDR4 SDRAM ”
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Changes on DDR5

• Higher Refresh Rate (every 3.9 µs)
• Refresh Management (RFM)
• On-Die ECC (ODECC)
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TRR on DDR5
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New Patterns for DDR5 (Phoenix)

REF1 REF2 REF3 · · · REF64 1 2 3 4

Pattern repeats
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FlippyRAM – Large-Scale Rowhammer Study



Overview

User Agreements
Privacy Policy
Risk Agreement

System Information
Retrieval

Reverse Engineer-
ing of the Ad-

dressing Functions

Verification & Injection
of the Addressing
Functions in the
Rowhammer PoCs

Running different
Rowhammer Tools

Optional up-
loading the data
to our server

24 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)



Overview

User Agreements
Privacy Policy
Risk Agreement

System Information
Retrieval

Reverse Engineer-
ing of the Ad-

dressing Functions

Verification & Injection
of the Addressing
Functions in the
Rowhammer PoCs

Running different
Rowhammer Tools

Optional up-
loading the data
to our server

24 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)



Overview

User Agreements
Privacy Policy
Risk Agreement

System Information
Retrieval

Reverse Engineer-
ing of the Ad-

dressing Functions

Verification & Injection
of the Addressing
Functions in the
Rowhammer PoCs

Running different
Rowhammer Tools

Optional up-
loading the data
to our server

24 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)



Overview

User Agreements
Privacy Policy
Risk Agreement

System Information
Retrieval

Reverse Engineer-
ing of the Ad-

dressing Functions

Verification & Injection
of the Addressing
Functions in the
Rowhammer PoCs

Running different
Rowhammer Tools

Optional up-
loading the data
to our server

24 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)



Overview

User Agreements
Privacy Policy
Risk Agreement

System Information
Retrieval

Reverse Engineer-
ing of the Ad-

dressing Functions

Verification & Injection
of the Addressing
Functions in the
Rowhammer PoCs

Running different
Rowhammer Tools

Optional up-
loading the data
to our server

24 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)



Overview

User Agreements
Privacy Policy
Risk Agreement

System Information
Retrieval

Reverse Engineer-
ing of the Ad-

dressing Functions

Verification & Injection
of the Addressing
Functions in the
Rowhammer PoCs

Running different
Rowhammer Tools

Optional up-
loading the data
to our server

24 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)



Overview

User Agreements
Privacy Policy
Risk Agreement

System Information
Retrieval

Reverse Engineer-
ing of the Ad-

dressing Functions

Verification & Injection
of the Addressing
Functions in the
Rowhammer PoCs

Running different
Rowhammer Tools

Optional up-
loading the data
to our server

24 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)



How could Users participate?

• Get a free bootable USB stick from us
• or download bootable ISO from
https://FlippyR.am – and verify the hash either
way!
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Hash mismatches and other hickups

• Flashing hundreds of USB sticks over Christmas

• Cheap USB sticks
• Actually a small bug in the framework:

• Plan: write a nice summary for users
• Testing first stick (took ≈ 8 hours) while flashing more→ ≈ 700 drives done
• Bug: summary is missing→ Bugfix→ different hash!
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Flashing left Scratches ...
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Engineering Flowchart

Engineering Flowchart
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USB Sticks: How it started

— How it’s going
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(#1): Majority of cases: reverse-engineering tools fail,
crash, or exceed time limits!
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(#2): Many Rowhammer tools failed because of missing
DRAM functions or 1 GiB hugepages.
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(#3): 126 (12.5%) out of 1006 datasets are vulnerable to
fully-automated Rowhammer attacks!
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(#4): Mainly tools for Intel, fewer AMD tools, especially
when we started the study→ we expect AMD to be equally
affected.



Affected DIMMs by DRAM Generation

LPDDR3

LPDDR4

LPDDR5

DDR2

DDR3

DDR4

DDR5

Other

Total

0

500

1,000

#
of
Da
ta
se
ts

Affected

36 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)



Affected DIMMs by DRAM Generation

LPDDR3

LPDDR4

LPDDR5

DDR2

DDR3

DDR4

DDR5

Other

Total

0

500

1,000

#
of
Da
ta
se
ts Not Affected

Affected

36 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)



Affected DIMMs by DRAM Generation

LPDDR3

LPDDR4

LPDDR5

DDR2

DDR3

DDR4

DDR5

Other

Total

0

500

1,000

34
0

30
0

20
0

7
0

302
82 (27.2%)

502
44 (8.8%)

83
0 28

0

1,006
126 (12.5%)

#
of
Da
ta
se
ts

No AFn
Not Affected
Affected

36 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)



(#5): DDR3→ simple fast patterns (RowhammerJS);
DDR4 with TRR→ pattern fuzzing for non-uniform patterns
(Blacksmith)
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(#6): DRAM from Samsung, Hynix, and third-party resellers
similarly affected by Rowhammer but only 2.4% of Micron
DIMMs?



Rowhammer in the Future



Probable Future

󰬯

• More proprietary mitigations, similar to TRR
• Problem: Nobody can verify how good/effective
they are

• The cat-and-mouse game will continue
• Solution: Publish mitigation algorithms so they
can be analyzed by everybody
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More powerful Attacks



• Better addressing function reverse-engineering
• Better tools on different platforms
• More exploits
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Defense Directions

• Process “improvements”

• back to 300nm? more distance between cells?
• Spatial isolation (e.g., CATT, ZebRAM, ...)

• Problem 1: bit flips sometimes more distant
• Problem 2: ColumnDisturb

• Changing ratio between memory accesses and
refreshes (more refreshes!)

• Increase refresh rate, TRR, ...,

Memory Band-Aid

• Integrity Protection

• ECC, more ECC, Chipkill, ...,

CSI:Rowhammer
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CSI:Rowhammer

MC MAC
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CSI:Rowhammer Correction Duration

# Errors # MAC Comp. Avg Duration

1 17 11ns
2 771 3.68 µs
3 33 800 124µs
4 1.51 × 106 6.65ms
5 6.91 × 107 261ms
6 3.07 × 109 12.8 s
7 1.21 × 1011 9.11min
8 5.72 × 1012 6.11 h
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Memory Band-Aid: Overview

Untrusted
Workload

Trusted
Workload

Memory
Controller

OS

DRAM

limited

unlimited

Set Memory Bandwidth Limit

enforce limit by
throttling ac-
cesses
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Memory Band-Aid Results

• Requires hardware changes

• Per-bank limit
• Per-process limit

→ no overhead for trusted processes
• Other processes: 0% to 9.4% in
macro-benchmarks

44 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)



Memory Band-Aid Results

• Requires hardware changes
• Per-bank limit

• Per-process limit
→ no overhead for trusted processes
• Other processes: 0% to 9.4% in
macro-benchmarks

44 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)



Memory Band-Aid Results

• Requires hardware changes
• Per-bank limit
• Per-process limit

→ no overhead for trusted processes
• Other processes: 0% to 9.4% in
macro-benchmarks

44 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)



Memory Band-Aid Results

• Requires hardware changes
• Per-bank limit
• Per-process limit

→ no overhead for trusted processes

• Other processes: 0% to 9.4% in
macro-benchmarks

44 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)



Memory Band-Aid Results

• Requires hardware changes
• Per-bank limit
• Per-process limit

→ no overhead for trusted processes
• Other processes: 0% to 9.4% in
macro-benchmarks

44 Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)



FlippyRAM for better reproducable Research

• it is easy to add new tools
• ... and test your additions on many systems
• ... and compare against existing tools
• ... and help others reproduce your results
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Conclusion

• Rowhammer can be weaponized today (≈ 12.5% of systems)

• ≈ 2x with addressing functions and 2x with CPU diversity solved
→ ≈ 50% of systems

• Defense game needs to change:

• Dummy
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Conclusion

• Rowhammer can be weaponized today (≈ 12.5% of systems)
• ≈ 2x with addressing functions and 2x with CPU diversity solved

→ ≈ 50% of systems
• Defense game needs to change:

• Security by obscurity
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Image Attribution

• Toilet Paper Blank from Slide 20 is from Dazzle UI and is under the CC
Attribution License
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